Add figures with tensorboard
This commit is contained in:
parent
7f6578c63e
commit
db69e9f953
2 changed files with 68 additions and 0 deletions
57
map2map/data/figures.py
Normal file
57
map2map/data/figures.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
from math import log2, log10, ceil
|
||||
import torch
|
||||
import numpy as np
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import Normalize, LogNorm, SymLogNorm
|
||||
from matplotlib.cm import ScalarMappable
|
||||
|
||||
|
||||
def fig3d(*fields, size=64, cmap=None, norm=None):
|
||||
fields = [f.detach().cpu().numpy() if isinstance(f, torch.Tensor) else f
|
||||
for f in fields]
|
||||
|
||||
assert all(isinstance(f, np.ndarray) for f in fields)
|
||||
|
||||
nc = fields[-1].shape[0]
|
||||
nf = len(fields)
|
||||
|
||||
fig, axes = plt.subplots(nc, nf, squeeze=False, figsize=(5 * nf, 4.25 * nc))
|
||||
|
||||
if cmap is None:
|
||||
if (fields[-1] >= 0).all():
|
||||
cmap = 'viridis'
|
||||
elif (fields[-1] <= 0).all():
|
||||
raise NotImplementedError
|
||||
else:
|
||||
cmap = 'RdBu_r'
|
||||
|
||||
if norm is None:
|
||||
def quantize(x):
|
||||
return 2 ** round(log2(x), ndigits=1)
|
||||
|
||||
l2, l1, h1, h2 = np.percentile(fields[-1], [2.5, 16, 84, 97.5])
|
||||
w1, w2 = (h1 - l1) / 2, (h2 - l2) / 2
|
||||
|
||||
if (fields[-1] >= 0).all():
|
||||
if h1 > 0.1 * h2:
|
||||
norm = Normalize(vmin=0, vmax=quantize(2 * h2))
|
||||
else:
|
||||
norm = LogNorm(vmin=quantize(0.5 * l2), vmax=quantize(2 * h2))
|
||||
elif (fields[-1] <= 0).all():
|
||||
raise NotImplementedError
|
||||
else:
|
||||
if w1 > 0.1 * w2:
|
||||
vlim = quantize(2.5 * w1)
|
||||
norm = Normalize(vmin=-vlim, vmax=vlim)
|
||||
else:
|
||||
vlim = quantize(w2)
|
||||
norm = SymLogNorm(linthresh=0.1 * w1, vmin=-vlim, vmax=vlim)
|
||||
|
||||
for c in range(nc):
|
||||
for f in range(nf):
|
||||
axes[c, f].imshow(fields[f][c, 0, :size, :size], cmap=cmap, norm=norm)
|
||||
plt.colorbar(ScalarMappable(norm=norm, cmap=cmap), ax=axes)
|
||||
|
||||
return fig
|
|
@ -10,6 +10,7 @@ from torch.utils.data import DataLoader
|
|||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from .data import FieldDataset
|
||||
from .data.figures import fig3d
|
||||
from . import models
|
||||
from .models import narrow_like
|
||||
from .models.adversary import adv_model_wrapper, adv_criterion_wrapper
|
||||
|
@ -322,6 +323,11 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
|
|||
'real': epoch_loss[4],
|
||||
}, global_step=epoch+1)
|
||||
|
||||
skip_chan = sum(in_chan) if args.adv and args.cgan else 0
|
||||
args.logger.add_figure('fig/epoch/train',
|
||||
fig3d(output[-1, skip_chan:], target[-1, skip_chan:]),
|
||||
global_step =epoch+1)
|
||||
|
||||
return epoch_loss
|
||||
|
||||
|
||||
|
@ -383,4 +389,9 @@ def validate(epoch, loader, model, criterion, adv_model, adv_criterion, args):
|
|||
'real': epoch_loss[4],
|
||||
}, global_step=epoch+1)
|
||||
|
||||
skip_chan = sum(in_chan) if args.adv and args.cgan else 0
|
||||
args.logger.add_figure('fig/epoch/val',
|
||||
fig3d(output[-1, skip_chan:], target[-1, skip_chan:]),
|
||||
global_step =epoch+1)
|
||||
|
||||
return epoch_loss
|
||||
|
|
Loading…
Reference in a new issue