Add separate input and target normalization

This commit is contained in:
Yin Li 2020-01-21 18:51:32 -05:00
parent 46a3a3a97d
commit c68b9928ee
12 changed files with 88 additions and 78 deletions

View file

@ -16,8 +16,10 @@ def get_args():
def add_common_args(parser):
parser.add_argument('--norms', type=str_list, help='comma-sep. list '
'of normalization functions from .data.norms')
parser.add_argument('--in-norms', type=str_list, help='comma-sep. list '
'of input normalization functions from .data.norms')
parser.add_argument('--tgt-norms', type=str_list, help='comma-sep. list '
'of target normalization functions from .data.norms')
parser.add_argument('--crop', type=int,
help='size to crop the input and target data')
parser.add_argument('--pad', default=0, type=int,

View file

@ -14,7 +14,8 @@ class FieldDataset(Dataset):
Likewise `tgt_patterns` is for target fields.
Input and target samples are matched by sorting the globbed files.
`norms` can be a list of callables to normalize each field.
`in_norms` is a list of of functions to normalize the input fields.
Likewise for `tgt_norms`.
Data augmentations are supported for scalar and vector fields.
@ -25,7 +26,7 @@ class FieldDataset(Dataset):
`div_data` enables data division, useful when combined with caching.
"""
def __init__(self, in_patterns, tgt_patterns,
norms=None, augment=False, crop=None, pad=0,
in_norms=None, tgt_norms=None, augment=False, crop=None, pad=0,
cache=False, div_data=False, rank=None, world_size=None,
**kwargs):
in_file_lists = [sorted(glob(p)) for p in in_patterns]
@ -44,18 +45,24 @@ class FieldDataset(Dataset):
self.in_files = self.in_files[rank * files : (rank + 1) * files]
self.tgt_files = self.tgt_files[rank * files : (rank + 1) * files]
self.in_channels = sum(np.load(f).shape[0] for f in self.in_files[0])
self.tgt_channels = sum(np.load(f).shape[0] for f in self.tgt_files[0])
self.in_chan = [np.load(f).shape[0] for f in self.in_files[0]]
self.tgt_chan = [np.load(f).shape[0] for f in self.tgt_files[0]]
self.size = np.load(self.in_files[0][0]).shape[1:]
self.size = np.asarray(self.size)
self.ndim = len(self.size)
if norms is not None: # FIXME: in_norms, tgt_norms
assert len(in_patterns) == len(norms), \
'numbers of normalization callables and input fields do not match'
norms = [import_norm(norm) for norm in norms if isinstance(norm, str)]
self.norms = norms
if in_norms is not None:
assert len(in_patterns) == len(in_norms), \
'numbers of input normalization functions and fields do not match'
in_norms = [import_norm(norm) for norm in in_norms]
self.in_norms = in_norms
if tgt_norms is not None:
assert len(tgt_patterns) == len(tgt_norms), \
'numbers of target normalization functions and fields do not match'
tgt_norms = [import_norm(norm) for norm in tgt_norms]
self.tgt_norms = tgt_norms
self.augment = augment
if self.ndim == 1 and self.augment:
@ -80,19 +87,9 @@ class FieldDataset(Dataset):
def __len__(self):
return len(self.in_files) * self.tot_reps
@property
def channels(self):
return self.in_channels, self.tgt_channels
def __getitem__(self, idx):
idx, sub_idx = idx // self.tot_reps, idx % self.tot_reps
start = np.unravel_index(sub_idx, self.reps) * self.crop
#print('==================================================')
#print(f'idx = {idx}, sub_idx = {sub_idx}, start = {start}')
#print(f'self.reps = {self.reps}, self.tot_reps = {self.tot_reps}')
#print(f'self.crop = {self.crop}, self.size = {self.size}')
#print(f'self.ndim = {self.ndim}, self.channels = {self.channels}')
#print(f'self.pad = {self.pad}')
if self.cache:
try:
@ -125,10 +122,12 @@ class FieldDataset(Dataset):
in_fields = perm(in_fields, perm_axes, self.ndim)
tgt_fields = perm(tgt_fields, perm_axes, self.ndim)
if self.norms is not None:
for norm, ifield, tfield in zip(self.norms, in_fields, tgt_fields):
norm(ifield)
norm(tfield)
if self.in_norms is not None:
for norm, x in zip(self.in_norms, in_fields):
norm(x)
if self.tgt_norms is not None:
for norm, x in zip(self.tgt_norms, tgt_fields):
norm(x)
in_fields = torch.cat(in_fields, dim=0)
tgt_fields = torch.cat(tgt_fields, dim=0)

View file

@ -3,8 +3,11 @@ from importlib import import_module
from . import cosmology
def import_norm(path):
mod, fun = path.rsplit('.', 1)
def import_norm(norm):
if callable(norm):
return norm
mod, fun = norm.rsplit('.', 1)
mod = import_module('.' + mod, __name__)
fun = getattr(mod, fun)
return fun

View file

@ -7,20 +7,20 @@ from .swish import Swish
class ConvBlock(nn.Module):
"""Convolution blocks of the form specified by `seq`.
"""
def __init__(self, in_channels, out_channels=None, mid_channels=None,
def __init__(self, in_chan, out_chan=None, mid_chan=None,
kernel_size=3, seq='CBA'):
super().__init__()
if out_channels is None:
out_channels = in_channels
if out_chan is None:
out_chan = in_chan
self.in_channels = in_channels
self.out_channels = out_channels
if mid_channels is None:
self.mid_channels = max(in_channels, out_channels)
self.in_chan = in_chan
self.out_chan = out_chan
if mid_chan is None:
self.mid_chan = max(in_chan, out_chan)
self.kernel_size = kernel_size
self.bn_channels = in_channels
self.norm_chan = in_chan
self.idx_conv = 0
self.num_conv = sum([seq.count(l) for l in ['U', 'D', 'C']])
@ -30,18 +30,18 @@ class ConvBlock(nn.Module):
def _get_layer(self, l):
if l == 'U':
in_channels, out_channels = self._setup_conv()
return nn.ConvTranspose3d(in_channels, out_channels, 2, stride=2)
in_chan, out_chan = self._setup_conv()
return nn.ConvTranspose3d(in_chan, out_chan, 2, stride=2)
elif l == 'D':
in_channels, out_channels = self._setup_conv()
return nn.Conv3d(in_channels, out_channels, 2, stride=2)
in_chan, out_chan = self._setup_conv()
return nn.Conv3d(in_chan, out_chan, 2, stride=2)
elif l == 'C':
in_channels, out_channels = self._setup_conv()
return nn.Conv3d(in_channels, out_channels, self.kernel_size)
in_chan, out_chan = self._setup_conv()
return nn.Conv3d(in_chan, out_chan, self.kernel_size)
elif l == 'B':
#return nn.BatchNorm3d(self.bn_channels)
#return nn.InstanceNorm3d(self.bn_channels, affine=True, track_running_stats=True)
return nn.InstanceNorm3d(self.bn_channels)
#return nn.BatchNorm3d(self.norm_chan)
#return nn.InstanceNorm3d(self.norm_chan, affine=True, track_running_stats=True)
return nn.InstanceNorm3d(self.norm_chan)
elif l == 'A':
return nn.LeakyReLU()
else:
@ -50,15 +50,15 @@ class ConvBlock(nn.Module):
def _setup_conv(self):
self.idx_conv += 1
in_channels = out_channels = self.mid_channels
in_chan = out_chan = self.mid_chan
if self.idx_conv == 1:
in_channels = self.in_channels
in_chan = self.in_chan
if self.idx_conv == self.num_conv:
out_channels = self.out_channels
out_chan = self.out_chan
self.bn_channels = out_channels
self.norm_chan = out_chan
return in_channels, out_channels
return in_chan, out_chan
def forward(self, x):
return self.convs(x)
@ -68,16 +68,16 @@ class ResBlock(ConvBlock):
"""Residual convolution blocks of the form specified by `seq`. Input is added
to the residual followed by an optional activation (trailing `'A'` in `seq`).
"""
def __init__(self, in_channels, out_channels=None, mid_channels=None,
def __init__(self, in_chan, out_chan=None, mid_chan=None,
seq='CBACBA'):
super().__init__(in_channels, out_channels=out_channels,
mid_channels=mid_channels,
super().__init__(in_chan, out_chan=out_chan,
mid_chan=mid_chan,
seq=seq[:-1] if seq[-1] == 'A' else seq)
if out_channels is None:
if out_chan is None:
self.skip = None
else:
self.skip = nn.Conv3d(in_channels, out_channels, 1)
self.skip = nn.Conv3d(in_chan, out_chan, 1)
if 'U' in seq or 'D' in seq:
raise NotImplementedError('upsample and downsample layers '

View file

@ -5,10 +5,10 @@ from .conv import ConvBlock, narrow_like
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
def __init__(self, in_chan, out_chan):
super().__init__()
self.conv_l0 = ConvBlock(in_channels, 64, seq='CAC')
self.conv_l0 = ConvBlock(in_chan, 64, seq='CAC')
self.down_l0 = ConvBlock(64, seq='BADBA')
self.conv_l1 = ConvBlock(64, seq='CBAC')
self.down_l1 = ConvBlock(64, seq='BADBA')
@ -18,7 +18,7 @@ class UNet(nn.Module):
self.up_r1 = ConvBlock(64, seq='BAUBA')
self.conv_r1 = ConvBlock(128, 64, seq='CBAC')
self.up_r0 = ConvBlock(64, seq='BAUBA')
self.conv_r0 = ConvBlock(128, out_channels, seq='CAC')
self.conv_r0 = ConvBlock(128, out_chan, seq='CAC')
def forward(self, x):
y0 = self.conv_l0(x)

View file

@ -5,10 +5,10 @@ from .conv import ConvBlock, ResBlock, narrow_like
class VNet(nn.Module):
def __init__(self, in_channels, out_channels):
def __init__(self, in_chan, out_chan):
super().__init__()
self.conv_l0 = ResBlock(in_channels, 64, seq='CAC')
self.conv_l0 = ResBlock(in_chan, 64, seq='CAC')
self.down_l0 = ConvBlock(64, seq='BADBA')
self.conv_l1 = ResBlock(64, seq='CBAC')
self.down_l1 = ConvBlock(64, seq='BADBA')
@ -18,7 +18,7 @@ class VNet(nn.Module):
self.up_r1 = ConvBlock(64, seq='BAUBA')
self.conv_r1 = ResBlock(128, 64, seq='CBAC')
self.up_r0 = ConvBlock(64, seq='BAUBA')
self.conv_r0 = ResBlock(128, out_channels, seq='CAC')
self.conv_r0 = ResBlock(128, out_chan, seq='CAC')
def forward(self, x):
y0 = self.conv_l0(x)
@ -45,11 +45,11 @@ class VNet(nn.Module):
class VNetFat(nn.Module):
def __init__(self, in_channels, out_channels):
def __init__(self, in_chan, out_chan):
super().__init__()
self.conv_l0 = nn.Sequential(
ResBlock(in_channels, 64, seq='CACBA'),
ResBlock(in_chan, 64, seq='CACBA'),
ResBlock(64, seq='CBACBA'),
)
self.down_l0 = ConvBlock(64, seq='DBA')
@ -72,7 +72,7 @@ class VNetFat(nn.Module):
self.up_r0 = ConvBlock(128, 64, seq='UBA')
self.conv_r0 = nn.Sequential(
ResBlock(128, seq='CBACBA'),
ResBlock(128, out_channels, seq='CAC'),
ResBlock(128, out_chan, seq='CAC'),
)
def forward(self, x):

View file

@ -23,10 +23,10 @@ def test(args):
num_workers=args.loader_workers,
)
in_channels, out_channels = test_dataset.channels
in_chan, out_chan = test_dataset.in_chan, test_dataset.tgt_chan
model = getattr(models, args.model)
model = model(in_channels, out_channels)
model = model(sum(in_chan), sum(out_chan))
criterion = getattr(torch.nn, args.criterion)
criterion = criterion()
@ -53,11 +53,17 @@ def test(args):
print('sample {} loss: {}'.format(i, loss.item()))
if args.norms is not None:
norm = test_dataset.norms[0] # FIXME
norm(input, undo=True)
norm(output, undo=True)
norm(target, undo=True)
if args.in_norms is not None:
start = 0
for norm, stop in zip(test_dataset.in_norms, np.cumsum(in_chan)):
norm(input[:, start:stop], undo=True)
start = stop
if args.tgt_norms is not None:
start = 0
for norm, stop in zip(test_dataset.tgt_norms, np.cumsum(out_chan)):
norm(output[:, start:stop], undo=True)
norm(target[:, start:stop], undo=True)
start = stop
np.savez('{}.npz'.format(i), input=input.numpy(),
output=output.numpy(), target=target.numpy())

View file

@ -81,10 +81,10 @@ def gpu_worker(local_rank, args):
pin_memory=True
)
in_channels, out_channels = train_dataset.channels
in_chan, out_chan = train_dataset.in_chan, train_dataset.tgt_chan
model = getattr(models, args.model)
model = model(in_channels, out_channels)
model = model(sum(in_chan), sum(out_chan))
model.to(args.device)
model = DistributedDataParallel(model, device_ids=[args.device],
process_group=dist.new_group())
@ -108,8 +108,8 @@ def gpu_worker(local_rank, args):
args.adv = args.adv_model is not None
if args.adv:
adv_model = getattr(models, args.adv_model)
adv_model = adv_model(in_channels + out_channels
if args.cgan else out_channels, 1)
adv_model = adv_model(sum(in_chan + out_chan)
if args.cgan else sum(out_chan), 1)
adv_model.to(args.device)
adv_model = DistributedDataParallel(adv_model, device_ids=[args.device],
process_group=dist.new_group())

View file

@ -35,7 +35,7 @@ tgt_files="$files"
m2m.py test \
--test-in-patterns "$data_root_dir/$in_dir/$test_dirs/$in_files" \
--test-tgt-patterns "$data_root_dir/$tgt_dir/$test_dirs/$tgt_files" \
--norms cosmology.dis --crop 256 --pad 20 \
--in-norms cosmology.dis --tgt-norms cosmology.dis --crop 256 --pad 20 \
--model VNet \
--load-state best_model.pth \
--batches 1 --loader-workers 0 \

View file

@ -40,7 +40,7 @@ srun m2m.py train \
--train-tgt-patterns "$data_root_dir/$tgt_dir/$train_dirs/$tgt_files" \
--val-in-patterns "$data_root_dir/$in_dir/$val_dirs/$in_files" \
--val-tgt-patterns "$data_root_dir/$tgt_dir/$val_dirs/$tgt_files" \
--norms cosmology.dis --augment --crop 128 --pad 20 \
--in-norms cosmology.dis --tgt-norms cosmology.dis --augment --crop 128 --pad 20 \
--model VNet --adv-model UNet --cgan \
--lr 0.0001 --adv-lr 0.0004 --batches 1 --loader-workers 0 \
--epochs 128 --seed $RANDOM \

View file

@ -35,7 +35,7 @@ tgt_files="$files"
m2m.py test \
--test-in-patterns "$data_root_dir/$in_dir/$test_dirs/$in_files" \
--test-tgt-patterns "$data_root_dir/$tgt_dir/$test_dirs/$tgt_files" \
--norms cosmology.vel --crop 256 --pad 20 \
--in-norms cosmology.vel --tgt-norms cosmology.vel --crop 256 --pad 20 \
--model VNet \
--load-state best_model.pth \
--batches 1 --loader-workers 0 \

View file

@ -40,7 +40,7 @@ srun m2m.py train \
--train-tgt-patterns "$data_root_dir/$tgt_dir/$train_dirs/$tgt_files" \
--val-in-patterns "$data_root_dir/$in_dir/$val_dirs/$in_files" \
--val-tgt-patterns "$data_root_dir/$tgt_dir/$val_dirs/$tgt_files" \
--norms cosmology.vel --augment --crop 128 --pad 20 \
--in-norms cosmology.vel --tgt-norms cosmology.vel --augment --crop 128 --pad 20 \
--model VNet --adv-model UNet --cgan \
--lr 0.0001 --adv-lr 0.0004 --batches 1 --loader-workers 0 \
--epochs 128 --seed $RANDOM \