Add cmap and norm for all non positive images in plt_slices

This commit is contained in:
Yin Li 2020-09-23 18:10:53 -04:00
parent e40ea52190
commit c102fc588e

View file

@ -1,5 +1,4 @@
from math import log2, log10, ceil
import warnings
import torch
import numpy as np
import matplotlib
@ -46,15 +45,14 @@ def plt_slices(*fields, size=64, title=None, cmap=None, norm=None):
)
for f, (field, cmap_col, norm_col) in enumerate(zip(fields, cmap, norm)):
all_non_neg = (field >= 0).all()
all_non_pos = (field <= 0).all()
all_non_neg = np.all(field >= 0)
all_non_pos = np.all(field <= 0)
if cmap_col is None:
if all_non_neg:
cmap_col = 'viridis'
cmap_col = 'inferno'
elif all_non_pos:
warnings.warn('no implementation for all non-positive values')
cmap_col = None
cmap_col = 'inferno_r'
else:
cmap_col = 'RdBu_r'
@ -68,8 +66,12 @@ def plt_slices(*fields, size=64, title=None, cmap=None, norm=None):
else:
norm_col = LogNorm(vmin=quantize(l2), vmax=quantize(h2))
elif all_non_pos:
warnings.warn('no implementation for all non-positive values yet')
norm_col = None
if l1 < 0.1 * l2:
norm_col = Normalize(vmin=-quantize(-l2), vmax=0)
else:
norm_col = SymLogNorm(linthresh=quantize(-h2),
vmin=-quantize(-l2),
vmax=-quantize(-h2))
else:
vlim = quantize(max(-l2, h2))
if w1 > 0.1 * w2 or l1 * h1 >= 0: