Add Lag2Eul to training

This commit is contained in:
Yin Li 2020-07-10 12:50:07 -04:00
parent 9d2cd5383b
commit bab3f08aa5

View file

@ -17,7 +17,7 @@ from torch.utils.tensorboard import SummaryWriter
from .data import FieldDataset, GroupedRandomSampler
from .data.figures import fig3d
from . import models
from .models import (narrow_like,
from .models import (narrow_like, Lag2Eul,
adv_model_wrapper, adv_criterion_wrapper,
add_spectral_norm, rm_spectral_norm,
InstanceNoise)
@ -139,6 +139,8 @@ def gpu_worker(local_rank, node, args):
model = DistributedDataParallel(model, device_ids=[device],
process_group=dist.new_group())
dis2den = Lag2Eul()
criterion = import_attr(args.criterion, nn.__name__, args.callback_at)
criterion = criterion()
criterion.to(device)
@ -248,14 +250,14 @@ def gpu_worker(local_rank, node, args):
train_sampler.set_epoch(epoch)
train_loss = train(epoch, train_loader,
model, criterion, optimizer, scheduler,
model, dis2den, criterion, optimizer, scheduler,
adv_model, adv_criterion, adv_optimizer, adv_scheduler,
logger, device, args)
epoch_loss = train_loss
if args.val:
val_loss = validate(epoch, val_loader,
model, criterion, adv_model, adv_criterion,
model, dis2den, criterion, adv_model, adv_criterion,
logger, device, args)
epoch_loss = val_loss
@ -300,7 +302,7 @@ def gpu_worker(local_rank, node, args):
dist.destroy_process_group()
def train(epoch, loader, model, criterion, optimizer, scheduler,
def train(epoch, loader, model, dis2den, criterion, optimizer, scheduler,
adv_model, adv_criterion, adv_optimizer, adv_scheduler,
logger, device, args):
model.train()
@ -332,6 +334,8 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
scale_factor=model.scale_factor, mode='nearest')
input = narrow_like(input, output)
output, target = dis2den(output, target)
loss = criterion(output, target)
epoch_loss[0] += loss.item()
@ -447,7 +451,7 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
return epoch_loss
def validate(epoch, loader, model, criterion, adv_model, adv_criterion,
def validate(epoch, loader, model, dis2den, criterion, adv_model, adv_criterion,
logger, device, args):
model.eval()
if args.adv:
@ -473,6 +477,8 @@ def validate(epoch, loader, model, criterion, adv_model, adv_criterion,
scale_factor=model.scale_factor, mode='nearest')
input = narrow_like(input, output)
output, target = dis2den(output, target)
loss = criterion(output, target)
epoch_loss[0] += loss.item()