Add power spectrum module

This commit is contained in:
Yin Li 2020-08-22 22:15:58 -04:00
parent 5d22594ede
commit afaf4675fe
2 changed files with 58 additions and 0 deletions

View file

@ -6,6 +6,7 @@ from .narrow import narrow_by, narrow_cast, narrow_like
from .resample import resample, Resampler
from .lag2eul import Lag2Eul
from .power import power
from .dice import DiceLoss, dice_loss

57
map2map/models/power.py Normal file
View file

@ -0,0 +1,57 @@
import torch
from .lag2eul import lag2eul
def power(x):
"""Compute power spectra of input fields
Each field should have batch and channel dimensions followed by spatial
dimensions. Powers are summed over channels, and averaged over batches.
Power is not normalized. Wavevectors are in unit of the fundamental
frequency of the input.
"""
signal_ndim = x.dim() - 2
kmax = min(d for d in x.shape[-signal_ndim:]) // 2
even = x.shape[-1] % 2 == 0
x = torch.rfft(x, signal_ndim)
P = x.pow(2).sum(dim=-1)
del x
batch_ndim = P.dim() - signal_ndim - 1
if batch_ndim > 0:
P = P.mean(tuple(range(batch_ndim)))
if P.dim() > signal_ndim:
P = P.sum(dim=0)
P = P.flatten()
k = [torch.arange(d, dtype=torch.float32, device=P.device)
for d in P.shape]
k = torch.meshgrid(*k)
k = torch.stack(k, dim=0)
k = k.norm(p=2, dim=0)
k = k.flatten()
N = torch.full_like(P, 2, dtype=torch.int32)
N[..., 0] = 1
if even:
N[..., -1] = 1
N = N.flatten()
kbin = k.ceil().to(torch.int32)
k = torch.bincount(kbin, weights=k * N)
P = torch.bincount(kbin, weights=P * N)
N = torch.bincount(kbin, weights=N)
del kbin
# drop k=0 mode and cut at kmax (smallest Nyquist)
k = k[1:1+kmax]
P = P[1:1+kmax]
N = N[1:1+kmax]
k /= N
P /= N
return k, P, N