Always use training loss for lr scheduler
This commit is contained in:
parent
2336d83f2d
commit
a886e53c54
@ -207,7 +207,7 @@ def gpu_worker(local_rank, node, args):
|
|||||||
if args.val:
|
if args.val:
|
||||||
val_loss = validate(epoch, val_loader, model, lag2eul, criterion,
|
val_loss = validate(epoch, val_loader, model, lag2eul, criterion,
|
||||||
logger, device, args)
|
logger, device, args)
|
||||||
epoch_loss = val_loss
|
#epoch_loss = val_loss
|
||||||
|
|
||||||
if args.reduce_lr_on_plateau:
|
if args.reduce_lr_on_plateau:
|
||||||
lag_scheduler.step(epoch_loss[0])
|
lag_scheduler.step(epoch_loss[0])
|
||||||
|
Loading…
Reference in New Issue
Block a user