Change U-Net and V-Net inner naming convention; Slim down V-Net

This commit is contained in:
Yin Li 2020-01-20 21:49:01 -05:00
parent 01ff0aca37
commit 94ce018cb8
2 changed files with 36 additions and 51 deletions

View file

@ -8,37 +8,37 @@ class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv_0l = ConvBlock(in_channels, 64, seq='CAC')
self.down_0l = ConvBlock(64, seq='BADBA')
self.conv_1l = ConvBlock(64, seq='CBAC')
self.down_1l = ConvBlock(64, seq='BADBA')
self.conv_l0 = ConvBlock(in_channels, 64, seq='CAC')
self.down_l0 = ConvBlock(64, seq='BADBA')
self.conv_l1 = ConvBlock(64, seq='CBAC')
self.down_l1 = ConvBlock(64, seq='BADBA')
self.conv_2c = ConvBlock(64, seq='CBAC')
self.conv_c = ConvBlock(64, seq='CBAC')
self.up_1r = ConvBlock(64, seq='BAUBA')
self.conv_1r = ConvBlock(128, 64, seq='CBAC')
self.up_0r = ConvBlock(64, seq='BAUBA')
self.conv_0r = ConvBlock(128, out_channels, seq='CAC')
self.up_r1 = ConvBlock(64, seq='BAUBA')
self.conv_r1 = ConvBlock(128, 64, seq='CBAC')
self.up_r0 = ConvBlock(64, seq='BAUBA')
self.conv_r0 = ConvBlock(128, out_channels, seq='CAC')
def forward(self, x):
y0 = self.conv_0l(x)
x = self.down_0l(y0)
y0 = self.conv_l0(x)
x = self.down_l0(y0)
y1 = self.conv_1l(x)
x = self.down_1l(y1)
y1 = self.conv_l1(x)
x = self.down_l1(y1)
x = self.conv_2c(x)
x = self.conv_c(x)
x = self.up_1r(x)
x = self.up_r1(x)
y1 = narrow_like(y1, x)
x = torch.cat([y1, x], dim=1)
del y1
x = self.conv_1r(x)
x = self.conv_r1(x)
x = self.up_0r(x)
x = self.up_r0(x)
y0 = narrow_like(y0, x)
x = torch.cat([y0, x], dim=1)
del y0
x = self.conv_0r(x)
x = self.conv_r0(x)
return x

View file

@ -8,52 +8,37 @@ class VNet(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv_0l = nn.Sequential(
ConvBlock(in_channels, 64, seq='CA'),
ResBlock(64, seq='CBACBACBA'),
)
self.down_0l = ConvBlock(64, 128, seq='DBA')
self.conv_1l = nn.Sequential(
ResBlock(128, seq='CBACBA'),
ResBlock(128, seq='CBACBA'),
)
self.down_1l = ConvBlock(128, 256, seq='DBA')
self.conv_l0 = ResBlock(in_channels, 64, seq='CAC')
self.down_l0 = ConvBlock(64, seq='BADBA')
self.conv_l1 = ResBlock(64, seq='CBAC')
self.down_l1 = ConvBlock(64, seq='BADBA')
self.conv_2c = nn.Sequential(
ResBlock(256, seq='CBACBA'),
ResBlock(256, seq='CBACBA'),
)
self.conv_c = ResBlock(64, seq='CBAC')
self.up_1r = ConvBlock(256, 128, seq='UBA')
self.conv_1r = nn.Sequential(
ResBlock(256, seq='CBACBA'),
ResBlock(256, seq='CBACBA'),
)
self.up_0r = ConvBlock(256, 64, seq='UBA')
self.conv_0r = nn.Sequential(
ResBlock(128, seq='CBACBACA'),
ConvBlock(128, out_channels, seq='C')
)
self.up_r1 = ConvBlock(64, seq='BAUBA')
self.conv_r1 = ResBlock(128, 64, seq='CBAC')
self.up_r0 = ConvBlock(64, seq='BAUBA')
self.conv_r0 = ResBlock(128, out_channels, seq='CAC')
def forward(self, x):
y0 = self.conv_0l(x)
x = self.down_0l(y0)
y0 = self.conv_l0(x)
x = self.down_l0(y0)
y1 = self.conv_1l(x)
x = self.down_1l(y1)
y1 = self.conv_l1(x)
x = self.down_l1(y1)
x = self.conv_2c(x)
x = self.conv_c(x)
x = self.up_1r(x)
x = self.up_r1(x)
y1 = narrow_like(y1, x)
x = torch.cat([y1, x], dim=1)
del y1
x = self.conv_1r(x)
x = self.conv_r1(x)
x = self.up_0r(x)
x = self.up_r0(x)
y0 = narrow_like(y0, x)
x = torch.cat([y0, x], dim=1)
del y0
x = self.conv_0r(x)
x = self.conv_r0(x)
return x