Add more arguments
This commit is contained in:
parent
c0a26290c8
commit
8bf3dd841e
@ -1,88 +1,89 @@
|
||||
arguments:
|
||||
- 'in-norms':
|
||||
'in-norms':
|
||||
type: str_list
|
||||
help: 'comma-sep. list of input normalization functions'
|
||||
- 'tgt-norms':
|
||||
'tgt-norms':
|
||||
type: str_list
|
||||
help: 'comma-sep. list of target normalization functions'
|
||||
- 'crop':
|
||||
'crop':
|
||||
type: int_tuple
|
||||
help: 'size to crop the input and target data. Default is the field size. Comma-sep. list of 1 or d integers'
|
||||
- 'crop-start':
|
||||
'crop-start':
|
||||
type: int_tuple
|
||||
help: 'starting point of the first crop. Default is the origin. Comma-sep. list of 1 or d integers'
|
||||
- 'crop-stop':
|
||||
'crop-stop':
|
||||
type: int_tuple
|
||||
help: 'stopping point of the last crop. Default is the opposite corner to the origin. Comma-sep. list of 1 or d integers'
|
||||
- 'crop-step':
|
||||
'crop-step':
|
||||
type: int_tuple
|
||||
help: 'spacing between crops. Default is the crop size. Comma-sep. list of 1 or d integers'
|
||||
- 'in-pad':
|
||||
pad: 0
|
||||
'in-pad':
|
||||
default: 0
|
||||
type: int_tuple
|
||||
help: 'size to pad the input data beyond the crop size, assuming periodic boundary condition. Comma-sep. list of 1, d, or dx2 integers, to pad equally along all axes, symmetrically on each, or by the specified size on every boundary, respectively'
|
||||
- 'tgt-pad':
|
||||
'tgt-pad':
|
||||
default: 0
|
||||
type: int_tuple
|
||||
help: 'size to pad the target data beyond the crop size, assuming periodic boundary condition, useful for super-resolution. Comma-sep. list with the same format as in-pad'
|
||||
- 'scale-factor':
|
||||
'scale-factor':
|
||||
default: 1
|
||||
type: int
|
||||
help: 'upsampling factor for super-resolution, in which case crop and pad are sizes of the input resolution'
|
||||
- 'model':
|
||||
'model':
|
||||
type: str
|
||||
required: true
|
||||
help: '(generator) model'
|
||||
- 'criterion':
|
||||
'criterion':
|
||||
default: 'MSELoss'
|
||||
type: str
|
||||
help: 'loss function'
|
||||
- 'load-state':
|
||||
'load-state':
|
||||
default: ckpt_link
|
||||
type: str
|
||||
help: 'path to load the states of model, optimizer, rng, etc. Default is the checkpoint. Start from scratch in case of empty string or missing checkpoint'
|
||||
- 'load-state-non-strict':
|
||||
action: 'store_false'
|
||||
'load-state-non-strict':
|
||||
# action: 'store_false'
|
||||
help: 'allow incompatible keys when loading model states'
|
||||
dest: 'load_state_strict'
|
||||
- 'batch-size':
|
||||
'batches': 0
|
||||
# dest: 'load_state_strict'
|
||||
'batch-size':
|
||||
default: 0
|
||||
type: int
|
||||
required: true
|
||||
help: 'mini-batch size, per GPU in training or in total in testing'
|
||||
- 'loader-workers':
|
||||
'loader-workers':
|
||||
default: 8
|
||||
type: int
|
||||
help: 'number of subprocesses per data loader. 0 to disable multiprocessing'
|
||||
- 'callback-at':
|
||||
type: 'lambda s: os.path.abspath(s)'
|
||||
'callback-at':
|
||||
type: 'abspath'
|
||||
help: 'directory of custorm code defining callbacks for models, norms, criteria, and optimizers. Disabled if not set. This is appended to the default locations, thus has the lowest priority'
|
||||
- 'misc-kwargs':
|
||||
'misc-kwargs':
|
||||
default: '{}'
|
||||
type: json.loads
|
||||
type: json
|
||||
help: 'miscellaneous keyword arguments for custom models and norms. Be careful with name collisions'
|
||||
arguments:
|
||||
- 'optimizer':
|
||||
default: 'Adam'
|
||||
type: str
|
||||
help: 'optimizer for training'
|
||||
- 'learning-rate':
|
||||
default: 0.001
|
||||
type: float
|
||||
help: 'learning rate for training'
|
||||
- 'num-epochs':
|
||||
default: 100
|
||||
type: int
|
||||
help: 'number of training epochs'
|
||||
- 'save-interval':
|
||||
default: 10
|
||||
type: int
|
||||
help: 'interval for saving checkpoints during training'
|
||||
- 'log-interval':
|
||||
default: 10
|
||||
type: int
|
||||
help: 'interval for logging training progress'
|
||||
- 'device':
|
||||
default: 'cuda'
|
||||
type: str
|
||||
help: 'device for training (cuda or cpu)'
|
||||
|
||||
# arguments:
|
||||
# - 'optimizer':
|
||||
# default: 'Adam'
|
||||
# type: str
|
||||
# help: 'optimizer for training'
|
||||
# - 'learning-rate':
|
||||
# default: 0.001
|
||||
# type: float
|
||||
# help: 'learning rate for training'
|
||||
# - 'num-epochs':
|
||||
# default: 100
|
||||
# type: int
|
||||
# help: 'number of training epochs'
|
||||
# - 'save-interval':
|
||||
# default: 10
|
||||
# type: int
|
||||
# help: 'interval for saving checkpoints during training'
|
||||
# - 'log-interval':
|
||||
# default: 10
|
||||
# type: int
|
||||
# help: 'interval for logging training progress'
|
||||
# - 'device':
|
||||
# default: 'cuda'
|
||||
# type: str
|
||||
# help: 'device for training (cuda or cpu)'
|
@ -10,44 +10,98 @@ except ImportError:
|
||||
from yaml import Loader
|
||||
|
||||
import importlib.resources
|
||||
import json
|
||||
from functools import partial
|
||||
|
||||
def _load_resource_file(resource_path):
|
||||
package = importlib.import_module('map2map') # Import the package
|
||||
with importlib.resources.path('map2map', resource_path) as path:
|
||||
return path.read_text() # Read the file and return its content
|
||||
# Import the package
|
||||
pkg_files = importlib.resources.files()
|
||||
with pkg_files.open(resource_path) as file:
|
||||
return file.read_text() # Read the file and return its content
|
||||
|
||||
def str_list(s):
|
||||
return s.split(',')
|
||||
def _str_list(value):
|
||||
return value.split(',')
|
||||
|
||||
def m2m_options(f):
|
||||
common_args = _load_resource_file('common_args.yaml')
|
||||
def _int_tuple(value):
|
||||
t = value.split(',')
|
||||
t = tuple(int(i) for i in t)
|
||||
return t
|
||||
|
||||
for arg in common_args['arguments']:
|
||||
class VariadicType(click.ParamType):
|
||||
|
||||
_mapper = {
|
||||
"str_list": {"type": "string_list", "func": _str_list},
|
||||
"int_tuple": {"type": "int_tuple", "func": _int_tuple},
|
||||
"json": {"type": "json", "func": json.loads},
|
||||
"int": {"type": "int"},
|
||||
"float": {"type": "float"},
|
||||
"str": {"type": "str"},
|
||||
"abspath": {"type": "path", "func": os.path.abspath},
|
||||
}
|
||||
|
||||
def __init__(self, typename):
|
||||
if typename in self._mapper:
|
||||
self._type = self._mapper[typename]
|
||||
elif type(typename) == dict:
|
||||
self._type = self._mapper[typename["type"]]
|
||||
self.args = typename["opts"]
|
||||
else:
|
||||
raise ValueError(f"Unknown type: {typename}")
|
||||
self._typename = typename
|
||||
self.name = self._type["type"]
|
||||
if "func" not in self._type:
|
||||
self._type["func"] = eval(self._type['type'])
|
||||
|
||||
def convert(self, value, param, ctx):
|
||||
try:
|
||||
return self.type(value)
|
||||
except Exception as e:
|
||||
self.fail(f"Could not parse {self._typename}: {e}", param, ctx)
|
||||
|
||||
|
||||
def _apply_options(options_file, f):
|
||||
common_args = yaml.load(_load_resource_file(options_file), Loader=Loader)
|
||||
common_args = common_args['arguments']
|
||||
|
||||
for arg in common_args:
|
||||
argopt = common_args[arg]
|
||||
if 'type' in argopt:
|
||||
argopt['type'] = eval(argopt['type'])
|
||||
if type(argopt['type']) == dict and argopt['type']['type'] == 'choice':
|
||||
argopt['type'] = click.Choice(argopt['type']['opts'])
|
||||
else:
|
||||
argopt['type'] = VariadicType(argopt['type'])
|
||||
f = click.option(f'--{arg}', **argopt)(f)
|
||||
else:
|
||||
f = click.option(f'--{arg}', **argopt)(f)
|
||||
|
||||
return f
|
||||
|
||||
def m2m_options(f):
|
||||
return _apply_options("common_args.yaml", f)
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.option("--config", type=click.Path())
|
||||
@click.option("--config", type=click.Path(), help="Path to config file")
|
||||
@click.pass_context
|
||||
def main(ctx, config):
|
||||
if os.path.exists(config):
|
||||
if config is not None and os.path.exists(config):
|
||||
with open(config, 'r') as f:
|
||||
config = yaml.load(f.read(), Loader=Loader)
|
||||
ctx.default_map = config
|
||||
|
||||
@main.command()
|
||||
@m2m_options
|
||||
def train(**kwargs):
|
||||
args = get_args()
|
||||
train.node_worker(args)
|
||||
# Make a class that provides access to dict with the attribute mechanism
|
||||
class DictProxy:
|
||||
def __init__(self, d):
|
||||
self.__dict__ = d
|
||||
|
||||
@main.command()
|
||||
@m2m_options
|
||||
def test():
|
||||
test.test(args)
|
||||
@partial(_apply_options, "train_args.yaml")
|
||||
def train(**kwargs):
|
||||
train.node_worker(DictProxy(kwargs))
|
||||
|
||||
@main.command()
|
||||
@m2m_options
|
||||
@partial(_apply_options, "test_args.yaml")
|
||||
def test(**kwargs):
|
||||
test.test(DictProxy(kwargs))
|
||||
|
16
map2map/test_args.yaml
Normal file
16
map2map/test_args.yaml
Normal file
@ -0,0 +1,16 @@
|
||||
arguments:
|
||||
'test-style-pattern':
|
||||
type: str
|
||||
required: true
|
||||
help: glob pattern for test data styles
|
||||
'test-in-patterns':
|
||||
type: str_list
|
||||
required: true
|
||||
help: comma-sep. list of glob patterns for test input data
|
||||
'test-tgt-patterns':
|
||||
type: str_list
|
||||
required: true
|
||||
help: comma-sep. list of glob patterns for test target data
|
||||
'num-threads':
|
||||
type: int
|
||||
help: number of CPU threads when cuda is unavailable. Default is the number of CPUs on the node by slurm
|
86
map2map/train_args.yaml
Normal file
86
map2map/train_args.yaml
Normal file
@ -0,0 +1,86 @@
|
||||
arguments:
|
||||
'train-style-pattern':
|
||||
type: str
|
||||
required: true
|
||||
help: 'glob pattern for training data styles'
|
||||
'train-in-patterns':
|
||||
type: str_list
|
||||
required: true
|
||||
help: 'comma-sep. list of glob patterns for training input data'
|
||||
'train-tgt-patterns':
|
||||
type: str_list
|
||||
required: true
|
||||
help: 'comma-sep. list of glob patterns for training target data'
|
||||
'val-style-pattern':
|
||||
type: str
|
||||
help: 'glob pattern for validation data styles'
|
||||
'val-in-patterns':
|
||||
type: str_list
|
||||
help: 'comma-sep. list of glob patterns for validation input data'
|
||||
'val-tgt-patterns':
|
||||
type: str_list
|
||||
help: 'comma-sep. list of glob patterns for validation target data'
|
||||
'augment':
|
||||
is_flag: true
|
||||
help: 'enable data augmentation of axis flipping and permutation'
|
||||
'aug-shift':
|
||||
type: int_tuple
|
||||
help: 'data augmentation by shifting cropping by [0, aug_shift) pixels, useful for models that treat neighboring pixels differently, e.g. with strided convolutions. Comma-sep. list of 1 or d integers'
|
||||
'aug-add':
|
||||
type: float
|
||||
help: 'additive data augmentation, (normal) std, same factor for all fields'
|
||||
'aug-mul':
|
||||
type: float
|
||||
help: 'multiplicative data augmentation, (log-normal) std, same factor for all fields'
|
||||
'optimizer':
|
||||
default: 'Adam'
|
||||
type: str
|
||||
help: 'optimization algorithm'
|
||||
'lr':
|
||||
type: float
|
||||
required: true
|
||||
help: 'initial learning rate'
|
||||
'optimizer-args':
|
||||
default: '{}'
|
||||
type: json
|
||||
help: "optimizer arguments in addition to the learning rate, e.g. --optimizer-args '{\"betas\": [0.5, 0.9]}'"
|
||||
'reduce-lr-on-plateau':
|
||||
is_flag: true
|
||||
help: 'Enable ReduceLROnPlateau learning rate scheduler'
|
||||
'scheduler-args':
|
||||
default: '{"verbose": true}'
|
||||
type: json
|
||||
help: 'arguments for the ReduceLROnPlateau scheduler'
|
||||
'init-weight-std':
|
||||
type: float
|
||||
help: 'weight initialization std'
|
||||
'epochs':
|
||||
default: 128
|
||||
type: int
|
||||
help: 'total number of epochs to run'
|
||||
'seed':
|
||||
default: 42
|
||||
type: int
|
||||
help: 'seed for initializing training'
|
||||
'div-data':
|
||||
is_flag: true
|
||||
help: 'enable data division among GPUs for better page caching. Data division is shuffled every epoch. Only relevant if there are multiple crops in each field'
|
||||
'div-shuffle-dist':
|
||||
default: 1
|
||||
type: float
|
||||
help: 'distance to further shuffle cropped samples relative to their fields, to be used with --div-data. Only relevant if there are multiple crops in each file. The order of each sample is randomly displaced by this value. Setting it to 0 turn off this randomization, and setting it to N limits the shuffling within a distance of N files. Change this to balance cache locality and stochasticity'
|
||||
'dist-backend':
|
||||
default: 'nccl'
|
||||
type:
|
||||
type: "choice"
|
||||
opts:
|
||||
- 'gloo'
|
||||
- 'nccl'
|
||||
help: 'distributed backend'
|
||||
'log-interval':
|
||||
default: 100
|
||||
type: int
|
||||
help: 'interval (batches) between logging training loss'
|
||||
'detect-anomaly':
|
||||
is_flag: true
|
||||
help: 'enable anomaly detection for the autograd engine'
|
@ -18,7 +18,7 @@ dependencies = [
|
||||
'scipy',
|
||||
'matplotlib',
|
||||
'tensorboard',
|
||||
'click']
|
||||
'click','pyyaml']
|
||||
|
||||
authors = [
|
||||
{name = "Yin Li", email = "eelregit@gmail.com"},
|
||||
|
Loading…
Reference in New Issue
Block a user