Add memmap to numpy data loading

This commit is contained in:
Yin Li 2020-07-14 17:05:30 -04:00
parent eba76bf90d
commit 818ed6923d
11 changed files with 25 additions and 126 deletions

View File

@ -63,7 +63,7 @@ def add_common_args(parser):
parser.add_argument('--load-state', default=ckpt_link, type=str,
help='path to load the states of model, optimizer, rng, etc. '
'Default is the checkpoint. '
'Start from scratch if set empty or the checkpoint is missing')
'Start from scratch in case of empty string or missing checkpoint')
parser.add_argument('--load-state-non-strict', action='store_false',
help='allow incompatible keys when loading model states',
dest='load_state_strict')
@ -75,12 +75,6 @@ def add_common_args(parser):
'in total in testing. Default is 0 for single batch, '
'otherwise same as the batch size')
parser.add_argument('--cache', action='store_true',
help='enable LRU cache of input and target fields to reduce I/O')
parser.add_argument('--cache-maxsize', type=int,
help='maximum pairs of fields in cache, unlimited by default. '
'This only applies to training if not None, '
'in which case the testing cache maxsize is 1')
parser.add_argument('--callback-at', type=lambda s: os.path.abspath(s),
help='directory of custorm code defining callbacks for models, '
'norms, criteria, and optimizers. Disabled if not set. '
@ -153,8 +147,6 @@ def add_train_args(parser):
parser.add_argument('--seed', default=42, type=int,
help='seed for initializing training')
parser.add_argument('--div-data', action='store_true',
help='enable data division among GPUs, useful with cache')
parser.add_argument('--dist-backend', default='nccl', type=str,
choices=['gloo', 'nccl'], help='distributed backend')
parser.add_argument('--log-interval', default=100, type=int,
@ -190,17 +182,6 @@ def set_common_args(args):
if args.batches > 1:
args.loader_workers = args.batches
if not args.cache and args.cache_maxsize is not None:
args.cache_maxsize = None
warnings.warn('Resetting cache maxsize given cache is disabled',
RuntimeWarning)
if (args.cache and args.cache_maxsize is not None
and args.cache_maxsize < 1):
args.cache = False
args.cache_maxsize = None
warnings.warn('Disabling cache given cache maxsize < 1',
RuntimeWarning)
def set_train_args(args):
set_common_args(args)

View File

@ -1,5 +1,4 @@
from glob import glob
from functools import lru_cache
import numpy as np
import torch
import torch.nn.functional as F
@ -39,20 +38,12 @@ class FieldDataset(Dataset):
Setting integer `scale_factor` greater than 1 will crop target bigger than
the input for super-resolution, in which case `crop` and `pad` are sizes of
the input resolution.
`cache` enables LRU cache of the input and target fields, up to `cache_maxsize`
pairs (unlimited by default).
`div_data` enables data division, to be used with `cache`, so that different
fields are cached in different GPU processes.
This saves CPU RAM but limits stochasticity.
"""
def __init__(self, in_patterns, tgt_patterns,
in_norms=None, tgt_norms=None, callback_at=None,
augment=False, aug_shift=None, aug_add=None, aug_mul=None,
crop=None, crop_start=None, crop_stop=None, crop_step=None,
pad=0, scale_factor=1,
cache=False, cache_maxsize=None, div_data=False,
rank=None, world_size=None):
pad=0, scale_factor=1):
in_file_lists = [sorted(glob(p)) for p in in_patterns]
self.in_files = list(zip(* in_file_lists))
@ -65,10 +56,12 @@ class FieldDataset(Dataset):
assert self.nfile > 0, 'file not found for {}'.format(in_patterns)
self.in_chan = [np.load(f).shape[0] for f in self.in_files[0]]
self.tgt_chan = [np.load(f).shape[0] for f in self.tgt_files[0]]
self.in_chan = [np.load(f, mmap_mode='r').shape[0]
for f in self.in_files[0]]
self.tgt_chan = [np.load(f, mmap_mode='r').shape[0]
for f in self.tgt_files[0]]
self.size = np.load(self.in_files[0][0]).shape[1:]
self.size = np.load(self.in_files[0][0], mmap_mode='r').shape[1:]
self.size = np.asarray(self.size)
self.ndim = len(self.size)
@ -126,47 +119,16 @@ class FieldDataset(Dataset):
'only support integer upsampling'
self.scale_factor = scale_factor
if cache:
self.get_fields = lru_cache(maxsize=cache_maxsize)(self.get_fields)
if div_data:
self.samples = []
# first add full fields when num_fields > num_GPU
for i in range(rank, self.nfile // world_size * world_size,
world_size):
self.samples.extend(list(
range(i * self.ncrop, (i + 1) * self.ncrop)
))
# then split the rest into fractions of fields
# drop the last incomplete batch of samples
frac_start = self.nfile // world_size * world_size * self.ncrop
frac_samples = self.nfile % world_size * self.ncrop // world_size
self.samples.extend(list(
range(frac_start + rank * frac_samples,
frac_start + (rank + 1) * frac_samples)
))
else:
self.samples = list(range(self.nfile * self.ncrop))
self.nsample = len(self.samples)
self.rank = rank
def get_fields(self, idx):
in_fields = [np.load(f) for f in self.in_files[idx]]
tgt_fields = [np.load(f) for f in self.tgt_files[idx]]
return in_fields, tgt_fields
def __len__(self):
return self.nsample
return self.nfile * self.ncrop
def __getitem__(self, idx):
idx = self.samples[idx]
ifile, icrop = divmod(idx, self.ncrop)
in_fields, tgt_fields = self.get_fields(idx // self.ncrop)
in_fields = [np.load(f, mmap_mode='r') for f in self.in_files[ifile]]
tgt_fields = [np.load(f, mmap_mode='r') for f in self.tgt_files[ifile]]
anchor = self.anchors[idx % self.ncrop]
anchor = self.anchors[icrop]
for d, shift in enumerate(self.aug_shift):
if shift is not None:
@ -221,7 +183,8 @@ def crop(fields, anchor, crop, pad, size):
i = i.reshape((-1,) + (1,) * (ndim - d - 1))
ind.append(i)
x = x[ind]
x = x[tuple(ind)]
x.setflags(write=True) # workaround numpy bug before 1.18
new_fields.append(x)

View File

@ -30,7 +30,6 @@ def test(args):
crop_step=args.crop_step,
pad=args.pad,
scale_factor=args.scale_factor,
cache=args.cache,
)
test_loader = DataLoader(
test_dataset,

View File

@ -74,23 +74,8 @@ def gpu_worker(local_rank, node, args):
crop_step=args.crop_step,
pad=args.pad,
scale_factor=args.scale_factor,
cache=args.cache,
cache_maxsize=args.cache_maxsize,
div_data=args.div_data,
rank=rank,
world_size=args.world_size,
)
if args.div_data:
train_sampler = GroupedRandomSampler(
train_dataset,
group_size=None if args.cache_maxsize is None else
args.cache_maxsize * train_dataset.ncrop,
)
else:
try:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
except TypeError:
train_sampler = DistributedSampler(train_dataset) # old pytorch
train_loader = DataLoader(
train_dataset,
batch_size=args.batches,
@ -117,19 +102,8 @@ def gpu_worker(local_rank, node, args):
crop_step=args.crop_step,
pad=args.pad,
scale_factor=args.scale_factor,
cache=args.cache,
cache_maxsize=None if args.cache_maxsize is None else 1,
div_data=args.div_data,
rank=rank,
world_size=args.world_size,
)
if args.div_data:
val_sampler = None
else:
try:
val_sampler = DistributedSampler(val_dataset, shuffle=False)
except TypeError:
val_sampler = DistributedSampler(val_dataset) # old pytorch
val_loader = DataLoader(
val_dataset,
batch_size=args.batches,
@ -252,7 +226,6 @@ def gpu_worker(local_rank, node, args):
args.instance_noise_batches)
for epoch in range(start_epoch, args.epochs):
if not args.div_data:
train_sampler.set_epoch(epoch)
train_loss = train(epoch, train_loader,
@ -273,10 +246,7 @@ def gpu_worker(local_rank, node, args):
adv_scheduler.step(epoch_loss[0])
if rank == 0:
try:
logger.flush()
except AttributeError:
logger.close() # old pytorch
if ((min_loss is None or epoch_loss[0] < min_loss[0])
and epoch >= args.adv_start):
@ -299,12 +269,6 @@ def gpu_worker(local_rank, node, args):
os.symlink(state_file, tmp_link) # workaround to overwrite
os.rename(tmp_link, ckpt_link)
if args.cache:
print('rank {} train data: {}'.format(
rank, train_dataset.get_fields.cache_info()))
print('rank {} val data: {}'.format(
rank, val_dataset.get_fields.cache_info()))
dist.destroy_process_group()

View File

@ -38,8 +38,7 @@ srun m2m.py train \
--in-norms cosmology.dis --tgt-norms torch.log1p --augment --crop 128 --pad 20 \
--model UNet \
--lr 0.0001 --batches 1 --loader-workers 0 \
--epochs 1024 --seed $RANDOM \
--cache --div-data
--epochs 1024 --seed $RANDOM
date

View File

@ -38,8 +38,7 @@ m2m.py test \
--in-norms cosmology.dis --tgt-norms cosmology.dis --crop 256 --pad 20 \
--model VNet \
--load-state best_model.pt \
--batches 1 --loader-workers 0 \
--cache
--batches 1 --loader-workers 0
date

View File

@ -39,8 +39,7 @@ srun m2m.py train \
--in-norms cosmology.dis --tgt-norms cosmology.dis --augment --crop 128 --pad 20 \
--model VNet --adv-model UNet --cgan \
--lr 0.0001 --adv-lr 0.0004 --batches 1 --loader-workers 0 \
--epochs 1024 --seed $RANDOM \
--cache --div-data
--epochs 1024 --seed $RANDOM
date

View File

@ -39,10 +39,7 @@ srun m2m.py train \
--in-norms cosmology.dis,cosmology.vel --tgt-norms cosmology.dis,cosmology.vel --augment --crop 88 --pad 20 --scale-factor 2 \
--model VNet --adv-model PatchGAN --cgan \
--lr 0.0001 --adv-lr 0.0004 --batches 1 --loader-workers 0 \
--epochs 1024 --seed $RANDOM \
--cache --div-data
# --val-in-patterns "$data_root_dir/$in_dir/$val_dirs/$in_files_1,$data_root_dir/$in_dir/$val_dirs/$in_files_2" \
# --val-tgt-patterns "$data_root_dir/$tgt_dir/$val_dirs/$tgt_files_1,$data_root_dir/$tgt_dir/$val_dirs/$tgt_files_2" \
--epochs 1024 --seed $RANDOM
date

View File

@ -38,8 +38,7 @@ m2m.py test \
--in-norms cosmology.vel --tgt-norms cosmology.vel --crop 256 --pad 20 \
--model VNet \
--load-state best_model.pt \
--batches 1 --loader-workers 0 \
--cache
--batches 1 --loader-workers 0
date

View File

@ -39,8 +39,7 @@ srun m2m.py train \
--in-norms cosmology.vel --tgt-norms cosmology.vel --augment --crop 128 --pad 20 \
--model VNet --adv-model UNet --cgan \
--lr 0.0001 --adv-lr 0.0004 --batches 1 --loader-workers 0 \
--epochs 1024 --seed $RANDOM \
--cache --div-data
--epochs 1024 --seed $RANDOM
date

View File

@ -10,7 +10,7 @@ setup(
packages=find_packages(),
python_requires='>=3.6',
install_requires=[
'torch',
'torch>=1.2',
'numpy',
'scipy',
],