Change Lag2Eul to lag2eul as a function

This commit is contained in:
Yin Li 2020-08-22 23:25:08 -04:00
parent 3eb1b0bccc
commit 670364e54c
3 changed files with 68 additions and 72 deletions

View file

@ -5,7 +5,7 @@ from .patchgan import PatchGAN, PatchGAN42
from .narrow import narrow_by, narrow_cast, narrow_like
from .resample import resample, Resampler
from .lag2eul import Lag2Eul
from .lag2eul import lag2eul
from .power import power
from .dice import DiceLoss, dice_loss

View file

@ -2,7 +2,7 @@ import torch
import torch.nn as nn
class Lag2Eul(nn.Module):
def lag2eul(*xs, rm_dis_mean=True, periodic=False):
"""Transform fields from Lagrangian description to Eulerian description
Only works for 3d fields, output same mesh size as input.
@ -14,81 +14,79 @@ class Lag2Eul(nn.Module):
Implementation follows pmesh/cic.py by Yu Feng.
"""
def __init__(self):
super().__init__()
# FIXME for other redshift, box and mesh sizes
from ..data.norms.cosmology import D
z = 0
Boxsize = 1000
Nmesh = 512
dis_norm = 6 * D(z) * Nmesh / Boxsize # to mesh unit
# FIXME for other redshift, box and mesh sizes
from ..data.norms.cosmology import D
z = 0
Boxsize = 1000
Nmesh = 512
self.dis_norm = 6 * D(z) * Nmesh / Boxsize # to mesh unit
if any(x.dim() != 5 for x in xs):
raise NotImplementedError('only support 3d fields for now')
if any(x.shape[1] < 3 for x in xs):
raise ValueError('displacement not available with <3 channels')
def forward(self, *xs, rm_dis_mean=True, periodic=False):
if any(x.shape[1] < 3 for x in xs):
raise ValueError('displacement not available with <3 channels')
# common mean displacement of all inputs
# if removed, fewer particles go outside of the box
# common for all inputs so outputs are comparable in the same coords
dis_mean = 0
if rm_dis_mean:
dis_mean = sum(x[:, :3].detach().mean((2, 3, 4), keepdim=True)
for x in xs) / len(xs)
# common mean displacement of all inputs
# if removed, fewer particles go outside of the box
# common for all inputs so outputs are comparable in the same coords
dis_mean = 0
if rm_dis_mean:
dis_mean = sum(x[:, :3].detach().mean((2, 3, 4), keepdim=True)
for x in xs) / len(xs)
out = []
for x in xs:
N, Cin, DHW = x.shape[0], x.shape[1], x.shape[2:]
out = []
for x in xs:
N, Cin, DHW = x.shape[0], x.shape[1], x.shape[2:]
if Cin == 3:
Cout = 1
val = 1
else:
Cout = Cin - 3
val = x[:, 3:].contiguous().view(N, Cout, -1, 1)
mesh = torch.zeros(N, Cout, *DHW, dtype=x.dtype, device=x.device)
if Cin == 3:
Cout = 1
val = 1
else:
Cout = Cin - 3
val = x[:, 3:].contiguous().view(N, Cout, -1, 1)
mesh = torch.zeros(N, Cout, *DHW, dtype=x.dtype, device=x.device)
pos = (x[:, :3] - dis_mean) * dis_norm
pos = (x[:, :3] - dis_mean) * self.dis_norm
pos[:, 0] += torch.arange(0.5, DHW[0], device=x.device)[:, None, None]
pos[:, 1] += torch.arange(0.5, DHW[1], device=x.device)[:, None]
pos[:, 2] += torch.arange(0.5, DHW[2], device=x.device)
pos[:, 0] += torch.arange(0.5, DHW[0], device=x.device)[:, None, None]
pos[:, 1] += torch.arange(0.5, DHW[1], device=x.device)[:, None]
pos[:, 2] += torch.arange(0.5, DHW[2], device=x.device)
pos = pos.contiguous().view(N, 3, -1, 1)
pos = pos.contiguous().view(N, 3, -1, 1)
intpos = pos.floor().to(torch.int)
neighbors = (torch.arange(8, device=x.device)
>> torch.arange(3, device=x.device)[:, None, None] ) & 1
tgtpos = intpos + neighbors
del intpos, neighbors
intpos = pos.floor().to(torch.int)
neighbors = (torch.arange(8, device=x.device)
>> torch.arange(3, device=x.device)[:, None, None] ) & 1
tgtpos = intpos + neighbors
del intpos, neighbors
# CIC
kernel = (1.0 - torch.abs(pos - tgtpos)).prod(1, keepdim=True)
del pos
# CIC
kernel = (1.0 - torch.abs(pos - tgtpos)).prod(1, keepdim=True)
del pos
val = val * kernel
del kernel
val = val * kernel
del kernel
tgtpos = tgtpos.view(N, 3, -1) # fuse spatial and neighbor axes
val = val.view(N, Cout, -1)
tgtpos = tgtpos.view(N, 3, -1) # fuse spatial and neighbor axes
val = val.view(N, Cout, -1)
for n in range(N): # because ind has variable length
bounds = torch.tensor(DHW, device=x.device)[:, None]
for n in range(N): # because ind has variable length
bounds = torch.tensor(DHW, device=x.device)[:, None]
if periodic:
torch.remainder(tgtpos[n], bounds, out=tgtpos[n])
if periodic:
torch.remainder(tgtpos[n], bounds, out=tgtpos[n])
ind = (tgtpos[n, 0] * DHW[1] + tgtpos[n, 1]
) * DHW[2] + tgtpos[n, 2]
src = val[n]
ind = (tgtpos[n, 0] * DHW[1] + tgtpos[n, 1]
) * DHW[2] + tgtpos[n, 2]
src = val[n]
if not periodic:
mask = ((tgtpos[n] >= 0) & (tgtpos[n] < bounds)).all(0)
ind = ind[mask]
src = src[:, mask]
if not periodic:
mask = ((tgtpos[n] >= 0) & (tgtpos[n] < bounds)).all(0)
ind = ind[mask]
src = src[:, mask]
mesh[n].view(Cout, -1).index_add_(1, ind, src)
mesh[n].view(Cout, -1).index_add_(1, ind, src)
out.append(mesh)
out.append(mesh)
return out
return out

View file

@ -16,7 +16,7 @@ from torch.utils.tensorboard import SummaryWriter
from .data import FieldDataset, DistFieldSampler
from .data.figures import plt_slices, plt_power
from . import models
from .models import narrow_cast, resample, Lag2Eul
from .models import narrow_cast, resample, lag2eul
from .utils import import_attr, load_model_state_dict
@ -126,8 +126,6 @@ def gpu_worker(local_rank, node, args):
model = DistributedDataParallel(model, device_ids=[device],
process_group=dist.new_group())
lag2eul = Lag2Eul()
criterion = import_attr(args.criterion, nn.__name__, args.callback_at)
criterion = criterion()
criterion.to(device)
@ -193,13 +191,13 @@ def gpu_worker(local_rank, node, args):
for epoch in range(start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
train_loss = train(epoch, train_loader, model, lag2eul, criterion,
optimizer, scheduler, logger, device, args)
train_loss = train(epoch, train_loader, model, criterion,
optimizer, scheduler, logger, device, args)
epoch_loss = train_loss
if args.val:
val_loss = validate(epoch, val_loader, model, lag2eul, criterion,
logger, device, args)
val_loss = validate(epoch, val_loader, model, criterion,
logger, device, args)
#epoch_loss = val_loss
if args.reduce_lr_on_plateau:
@ -229,8 +227,8 @@ def gpu_worker(local_rank, node, args):
dist.destroy_process_group()
def train(epoch, loader, model, lag2eul, criterion,
optimizer, scheduler, logger, device, args):
def train(epoch, loader, model, criterion,
optimizer, scheduler, logger, device, args):
model.train()
rank = dist.get_rank()
@ -321,7 +319,7 @@ def train(epoch, loader, model, lag2eul, criterion,
return epoch_loss
def validate(epoch, loader, model, lag2eul, criterion, logger, device, args):
def validate(epoch, loader, model, criterion, logger, device, args):
model.eval()
rank = dist.get_rank()