Add grouped cache for data bigger than CPU RAM

This commit is contained in:
Yin Li 2020-05-28 23:01:04 -04:00
parent 2e687da905
commit 5bb2a19933
5 changed files with 103 additions and 24 deletions

View file

@ -1,4 +1,5 @@
import argparse
import warnings
from .train import ckpt_link
@ -53,7 +54,7 @@ def add_common_args(parser):
parser.add_argument('--load-state', default=ckpt_link, type=str,
help='path to load the states of model, optimizer, rng, etc. '
'Default is the checkpoint. '
'Start from scratch if the checkpoint does not exist')
'Start from scratch if set empty or the checkpoint is missing')
parser.add_argument('--load-state-non-strict', action='store_false',
help='allow incompatible keys when loading model states',
dest='load_state_strict')
@ -173,6 +174,17 @@ def set_common_args(args):
if args.batches > 1:
args.loader_workers = args.batches
if not args.cache and args.cache_maxsize is not None:
args.cache_maxsize = None
warnings.warn('Resetting cache maxsize given cache is disabled',
RuntimeWarning)
if (args.cache and args.cache_maxsize is not None
and args.cache_maxsize < 1):
args.cache = False
args.cache_maxsize = None
warnings.warn('Disabling cache given cache maxsize < 1',
RuntimeWarning)
def set_train_args(args):
set_common_args(args)

View file

@ -1 +1,2 @@
from .fields import FieldDataset
from .sampler import GroupedRandomSampler

View file

@ -11,7 +11,7 @@ from .norms import import_norm
class FieldDataset(Dataset):
"""Dataset of lists of fields.
`in_patterns` is a list of glob patterns for the input fields.
`in_patterns` is a list of glob patterns for the input field files.
For example, `in_patterns=['/train/field1_*.npy', '/train/field2_*.npy']`.
Likewise `tgt_patterns` is for target fields.
Input and target fields are matched by sorting the globbed files.
@ -51,15 +51,9 @@ class FieldDataset(Dataset):
assert len(self.in_files) == len(self.tgt_files), \
'number of input and target fields do not match'
self.nfile = len(self.in_files)
assert len(self.in_files) > 0, 'file not found'
if div_data:
files = len(self.in_files) // world_size
self.in_files = self.in_files[rank * files : (rank + 1) * files]
self.tgt_files = self.tgt_files[rank * files : (rank + 1) * files]
assert len(self.in_files) > 0, 'files not divisible among ranks'
assert self.nfile > 0, 'file not found'
self.in_chan = [np.load(f).shape[0] for f in self.in_files[0]]
self.tgt_chan = [np.load(f).shape[0] for f in self.tgt_files[0]]
@ -92,7 +86,7 @@ class FieldDataset(Dataset):
else:
self.crop = np.broadcast_to(crop, self.size.shape)
self.reps = self.size // self.crop
self.tot_reps = int(np.prod(self.reps))
self.ncrop = int(np.prod(self.reps))
assert isinstance(pad, int), 'only support symmetric padding for now'
self.pad = np.broadcast_to(pad, (self.ndim, 2))
@ -104,19 +98,44 @@ class FieldDataset(Dataset):
if cache:
self.get_fields = lru_cache(maxsize=cache_maxsize)(self.get_fields)
if div_data:
self.samples = []
# first add full fields when num_fields > num_GPU
for i in range(rank, self.nfile // world_size * world_size,
world_size):
self.samples.append(
range(i * self.ncrop, (i + 1) * self.ncrop)
)
# then split the rest into fractions of fields
# drop the last incomplete batch of samples
frac_start = self.nfile // world_size * world_size * self.ncrop
frac_samples = self.nfile % world_size * self.ncrop // world_size
self.samples.append(range(frac_start + rank * frac_samples,
frac_start + (rank + 1) * frac_samples))
self.samples = np.concatenate(self.samples)
else:
self.samples = np.arange(self.nfile * self.ncrop)
self.nsample = len(self.samples)
self.rank = rank
def get_fields(self, idx):
in_fields = [np.load(f) for f in self.in_files[idx]]
tgt_fields = [np.load(f) for f in self.tgt_files[idx]]
return in_fields, tgt_fields
def __len__(self):
return len(self.in_files) * self.tot_reps
return self.nsample
def __getitem__(self, idx):
idx, sub_idx = idx // self.tot_reps, idx % self.tot_reps
start = np.unravel_index(sub_idx, self.reps) * self.crop
idx = self.samples[idx]
in_fields, tgt_fields = self.get_fields(idx)
in_fields, tgt_fields = self.get_fields(idx // self.ncrop)
start = np.unravel_index(idx % self.ncrop, self.reps) * self.crop
in_fields = crop(in_fields, start, self.crop, self.pad)
tgt_fields = crop(tgt_fields, start * self.scale_factor,

31
map2map/data/sampler.py Normal file
View file

@ -0,0 +1,31 @@
from itertools import chain
import torch
from torch.utils.data import Sampler
class GroupedRandomSampler(Sampler):
"""Sample randomly within each group of samples and sequentially from group
to group.
This behaves like a simple random sampler by default
"""
def __init__(self, data_source, group_size=None):
self.data_source = data_source
self.sample_size = len(data_source)
if group_size is None:
group_size = self.sample_size
self.group_size = group_size
def __iter__(self):
starts = range(0, self.sample_size, self.group_size)
sizes = [self.group_size] * (len(starts) - 1)
sizes.append(self.sample_size - starts[-1])
return iter(chain(*[
(start + torch.randperm(size)).tolist()
for start, size in zip(starts, sizes)
]))
def __len__(self):
return self.sample_size

View file

@ -13,7 +13,7 @@ from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from .data import FieldDataset
from .data import FieldDataset, GroupedRandomSampler
from .data.figures import fig3d
from . import models
from .models import (narrow_like,
@ -48,11 +48,13 @@ def gpu_worker(local_rank, node, args):
device = torch.device('cuda', local_rank)
torch.cuda.device(device)
torch.manual_seed(args.seed)
#torch.backends.cudnn.deterministic = True # NOTE: test perf
rank = args.gpus_per_node * node + local_rank
# Need randomness across processes, for sampler, augmentation, noise etc.
# Note DDP broadcasts initial model states from rank 0
torch.manual_seed(args.seed + rank)
#torch.backends.cudnn.deterministic = True # NOTE: test perf
dist_init(rank, args)
train_dataset = FieldDataset(
@ -72,7 +74,13 @@ def gpu_worker(local_rank, node, args):
rank=rank,
world_size=args.world_size,
)
if not args.div_data:
if args.div_data:
train_sampler = GroupedRandomSampler(
train_dataset,
group_size=None if args.cache_maxsize is None else
args.cache_maxsize * train_dataset.ncrop,
)
else:
try:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
except TypeError:
@ -80,8 +88,8 @@ def gpu_worker(local_rank, node, args):
train_loader = DataLoader(
train_dataset,
batch_size=args.batches,
shuffle=args.div_data,
sampler=None if args.div_data else train_sampler,
shuffle=False,
sampler=train_sampler,
num_workers=args.loader_workers,
pin_memory=True,
)
@ -104,7 +112,9 @@ def gpu_worker(local_rank, node, args):
rank=rank,
world_size=args.world_size,
)
if not args.div_data:
if args.div_data:
val_sampler = None
else:
try:
val_sampler = DistributedSampler(val_dataset, shuffle=False)
except TypeError:
@ -113,7 +123,7 @@ def gpu_worker(local_rank, node, args):
val_dataset,
batch_size=args.batches,
shuffle=False,
sampler=None if args.div_data else val_sampler,
sampler=val_sampler,
num_workers=args.loader_workers,
pin_memory=True,
)
@ -278,6 +288,12 @@ def gpu_worker(local_rank, node, args):
os.symlink(state_file, tmp_link) # workaround to overwrite
os.rename(tmp_link, ckpt_link)
if args.cache:
print('rank {} train data: {}'.format(
rank, train_dataset.get_fields.cache_info()))
print('rank {} val data: {}'.format(
rank, val_dataset.get_fields.cache_info()))
dist.destroy_process_group()