Add grouped cache for data bigger than CPU RAM
This commit is contained in:
parent
2e687da905
commit
5bb2a19933
5 changed files with 103 additions and 24 deletions
|
@ -1,4 +1,5 @@
|
|||
import argparse
|
||||
import warnings
|
||||
|
||||
from .train import ckpt_link
|
||||
|
||||
|
@ -53,7 +54,7 @@ def add_common_args(parser):
|
|||
parser.add_argument('--load-state', default=ckpt_link, type=str,
|
||||
help='path to load the states of model, optimizer, rng, etc. '
|
||||
'Default is the checkpoint. '
|
||||
'Start from scratch if the checkpoint does not exist')
|
||||
'Start from scratch if set empty or the checkpoint is missing')
|
||||
parser.add_argument('--load-state-non-strict', action='store_false',
|
||||
help='allow incompatible keys when loading model states',
|
||||
dest='load_state_strict')
|
||||
|
@ -173,6 +174,17 @@ def set_common_args(args):
|
|||
if args.batches > 1:
|
||||
args.loader_workers = args.batches
|
||||
|
||||
if not args.cache and args.cache_maxsize is not None:
|
||||
args.cache_maxsize = None
|
||||
warnings.warn('Resetting cache maxsize given cache is disabled',
|
||||
RuntimeWarning)
|
||||
if (args.cache and args.cache_maxsize is not None
|
||||
and args.cache_maxsize < 1):
|
||||
args.cache = False
|
||||
args.cache_maxsize = None
|
||||
warnings.warn('Disabling cache given cache maxsize < 1',
|
||||
RuntimeWarning)
|
||||
|
||||
|
||||
def set_train_args(args):
|
||||
set_common_args(args)
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
from .fields import FieldDataset
|
||||
from .sampler import GroupedRandomSampler
|
||||
|
|
|
@ -11,7 +11,7 @@ from .norms import import_norm
|
|||
class FieldDataset(Dataset):
|
||||
"""Dataset of lists of fields.
|
||||
|
||||
`in_patterns` is a list of glob patterns for the input fields.
|
||||
`in_patterns` is a list of glob patterns for the input field files.
|
||||
For example, `in_patterns=['/train/field1_*.npy', '/train/field2_*.npy']`.
|
||||
Likewise `tgt_patterns` is for target fields.
|
||||
Input and target fields are matched by sorting the globbed files.
|
||||
|
@ -51,15 +51,9 @@ class FieldDataset(Dataset):
|
|||
|
||||
assert len(self.in_files) == len(self.tgt_files), \
|
||||
'number of input and target fields do not match'
|
||||
self.nfile = len(self.in_files)
|
||||
|
||||
assert len(self.in_files) > 0, 'file not found'
|
||||
|
||||
if div_data:
|
||||
files = len(self.in_files) // world_size
|
||||
self.in_files = self.in_files[rank * files : (rank + 1) * files]
|
||||
self.tgt_files = self.tgt_files[rank * files : (rank + 1) * files]
|
||||
|
||||
assert len(self.in_files) > 0, 'files not divisible among ranks'
|
||||
assert self.nfile > 0, 'file not found'
|
||||
|
||||
self.in_chan = [np.load(f).shape[0] for f in self.in_files[0]]
|
||||
self.tgt_chan = [np.load(f).shape[0] for f in self.tgt_files[0]]
|
||||
|
@ -92,7 +86,7 @@ class FieldDataset(Dataset):
|
|||
else:
|
||||
self.crop = np.broadcast_to(crop, self.size.shape)
|
||||
self.reps = self.size // self.crop
|
||||
self.tot_reps = int(np.prod(self.reps))
|
||||
self.ncrop = int(np.prod(self.reps))
|
||||
|
||||
assert isinstance(pad, int), 'only support symmetric padding for now'
|
||||
self.pad = np.broadcast_to(pad, (self.ndim, 2))
|
||||
|
@ -104,19 +98,44 @@ class FieldDataset(Dataset):
|
|||
if cache:
|
||||
self.get_fields = lru_cache(maxsize=cache_maxsize)(self.get_fields)
|
||||
|
||||
if div_data:
|
||||
self.samples = []
|
||||
|
||||
# first add full fields when num_fields > num_GPU
|
||||
for i in range(rank, self.nfile // world_size * world_size,
|
||||
world_size):
|
||||
self.samples.append(
|
||||
range(i * self.ncrop, (i + 1) * self.ncrop)
|
||||
)
|
||||
|
||||
# then split the rest into fractions of fields
|
||||
# drop the last incomplete batch of samples
|
||||
frac_start = self.nfile // world_size * world_size * self.ncrop
|
||||
frac_samples = self.nfile % world_size * self.ncrop // world_size
|
||||
self.samples.append(range(frac_start + rank * frac_samples,
|
||||
frac_start + (rank + 1) * frac_samples))
|
||||
|
||||
self.samples = np.concatenate(self.samples)
|
||||
else:
|
||||
self.samples = np.arange(self.nfile * self.ncrop)
|
||||
self.nsample = len(self.samples)
|
||||
|
||||
self.rank = rank
|
||||
|
||||
def get_fields(self, idx):
|
||||
in_fields = [np.load(f) for f in self.in_files[idx]]
|
||||
tgt_fields = [np.load(f) for f in self.tgt_files[idx]]
|
||||
return in_fields, tgt_fields
|
||||
|
||||
def __len__(self):
|
||||
return len(self.in_files) * self.tot_reps
|
||||
return self.nsample
|
||||
|
||||
def __getitem__(self, idx):
|
||||
idx, sub_idx = idx // self.tot_reps, idx % self.tot_reps
|
||||
start = np.unravel_index(sub_idx, self.reps) * self.crop
|
||||
idx = self.samples[idx]
|
||||
|
||||
in_fields, tgt_fields = self.get_fields(idx)
|
||||
in_fields, tgt_fields = self.get_fields(idx // self.ncrop)
|
||||
|
||||
start = np.unravel_index(idx % self.ncrop, self.reps) * self.crop
|
||||
|
||||
in_fields = crop(in_fields, start, self.crop, self.pad)
|
||||
tgt_fields = crop(tgt_fields, start * self.scale_factor,
|
||||
|
|
31
map2map/data/sampler.py
Normal file
31
map2map/data/sampler.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
from itertools import chain
|
||||
import torch
|
||||
from torch.utils.data import Sampler
|
||||
|
||||
|
||||
class GroupedRandomSampler(Sampler):
|
||||
"""Sample randomly within each group of samples and sequentially from group
|
||||
to group.
|
||||
|
||||
This behaves like a simple random sampler by default
|
||||
"""
|
||||
def __init__(self, data_source, group_size=None):
|
||||
self.data_source = data_source
|
||||
self.sample_size = len(data_source)
|
||||
|
||||
if group_size is None:
|
||||
group_size = self.sample_size
|
||||
self.group_size = group_size
|
||||
|
||||
def __iter__(self):
|
||||
starts = range(0, self.sample_size, self.group_size)
|
||||
sizes = [self.group_size] * (len(starts) - 1)
|
||||
sizes.append(self.sample_size - starts[-1])
|
||||
|
||||
return iter(chain(*[
|
||||
(start + torch.randperm(size)).tolist()
|
||||
for start, size in zip(starts, sizes)
|
||||
]))
|
||||
|
||||
def __len__(self):
|
||||
return self.sample_size
|
|
@ -13,7 +13,7 @@ from torch.utils.data.distributed import DistributedSampler
|
|||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from .data import FieldDataset
|
||||
from .data import FieldDataset, GroupedRandomSampler
|
||||
from .data.figures import fig3d
|
||||
from . import models
|
||||
from .models import (narrow_like,
|
||||
|
@ -48,11 +48,13 @@ def gpu_worker(local_rank, node, args):
|
|||
device = torch.device('cuda', local_rank)
|
||||
torch.cuda.device(device)
|
||||
|
||||
torch.manual_seed(args.seed)
|
||||
#torch.backends.cudnn.deterministic = True # NOTE: test perf
|
||||
|
||||
rank = args.gpus_per_node * node + local_rank
|
||||
|
||||
# Need randomness across processes, for sampler, augmentation, noise etc.
|
||||
# Note DDP broadcasts initial model states from rank 0
|
||||
torch.manual_seed(args.seed + rank)
|
||||
#torch.backends.cudnn.deterministic = True # NOTE: test perf
|
||||
|
||||
dist_init(rank, args)
|
||||
|
||||
train_dataset = FieldDataset(
|
||||
|
@ -72,7 +74,13 @@ def gpu_worker(local_rank, node, args):
|
|||
rank=rank,
|
||||
world_size=args.world_size,
|
||||
)
|
||||
if not args.div_data:
|
||||
if args.div_data:
|
||||
train_sampler = GroupedRandomSampler(
|
||||
train_dataset,
|
||||
group_size=None if args.cache_maxsize is None else
|
||||
args.cache_maxsize * train_dataset.ncrop,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
train_sampler = DistributedSampler(train_dataset, shuffle=True)
|
||||
except TypeError:
|
||||
|
@ -80,8 +88,8 @@ def gpu_worker(local_rank, node, args):
|
|||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=args.batches,
|
||||
shuffle=args.div_data,
|
||||
sampler=None if args.div_data else train_sampler,
|
||||
shuffle=False,
|
||||
sampler=train_sampler,
|
||||
num_workers=args.loader_workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
@ -104,7 +112,9 @@ def gpu_worker(local_rank, node, args):
|
|||
rank=rank,
|
||||
world_size=args.world_size,
|
||||
)
|
||||
if not args.div_data:
|
||||
if args.div_data:
|
||||
val_sampler = None
|
||||
else:
|
||||
try:
|
||||
val_sampler = DistributedSampler(val_dataset, shuffle=False)
|
||||
except TypeError:
|
||||
|
@ -113,7 +123,7 @@ def gpu_worker(local_rank, node, args):
|
|||
val_dataset,
|
||||
batch_size=args.batches,
|
||||
shuffle=False,
|
||||
sampler=None if args.div_data else val_sampler,
|
||||
sampler=val_sampler,
|
||||
num_workers=args.loader_workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
@ -278,6 +288,12 @@ def gpu_worker(local_rank, node, args):
|
|||
os.symlink(state_file, tmp_link) # workaround to overwrite
|
||||
os.rename(tmp_link, ckpt_link)
|
||||
|
||||
if args.cache:
|
||||
print('rank {} train data: {}'.format(
|
||||
rank, train_dataset.get_fields.cache_info()))
|
||||
print('rank {} val data: {}'.format(
|
||||
rank, val_dataset.get_fields.cache_info()))
|
||||
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue