Add lagrangian and eulerian alternate training

This commit is contained in:
Yin Li 2020-07-15 02:26:16 -04:00
parent 337d65de68
commit 2d5234812b

View File

@ -118,21 +118,29 @@ def gpu_worker(local_rank, node, args):
model = DistributedDataParallel(model, device_ids=[device], model = DistributedDataParallel(model, device_ids=[device],
process_group=dist.new_group()) process_group=dist.new_group())
dis2den = Lag2Eul() lag2eul = Lag2Eul()
criterion = import_attr(args.criterion, nn.__name__, args.callback_at) criterion = import_attr(args.criterion, nn.__name__, args.callback_at)
criterion = criterion() criterion = criterion()
criterion.to(device) criterion.to(device)
optimizer = import_attr(args.optimizer, optim.__name__, args.callback_at) optimizer = import_attr(args.optimizer, optim.__name__, args.callback_at)
optimizer = optimizer( lag_optimizer = optimizer(
model.parameters(), model.parameters(),
lr=args.lr, lr=args.lr,
#momentum=args.momentum, #momentum=args.momentum,
betas=(0.5, 0.999), betas=(0.9, 0.999),
weight_decay=args.weight_decay, weight_decay=args.weight_decay,
) )
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, eul_optimizer = optimizer(
model.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
weight_decay=args.weight_decay,
)
lag_scheduler = optim.lr_scheduler.ReduceLROnPlateau(lag_optimizer,
factor=0.1, patience=10, verbose=True)
eul_scheduler = optim.lr_scheduler.ReduceLROnPlateau(eul_optimizer,
factor=0.1, patience=10, verbose=True) factor=0.1, patience=10, verbose=True)
if (args.load_state == ckpt_link and not os.path.isfile(ckpt_link) if (args.load_state == ckpt_link and not os.path.isfile(ckpt_link)
@ -187,23 +195,24 @@ def gpu_worker(local_rank, node, args):
for epoch in range(start_epoch, args.epochs): for epoch in range(start_epoch, args.epochs):
train_sampler.set_epoch(epoch) train_sampler.set_epoch(epoch)
train_loss = train(epoch, train_loader, train_loss = train(epoch, train_loader, model, lag2eul, criterion,
model, dis2den, criterion, optimizer, scheduler, lag_optimizer, eul_optimizer, lag_scheduler, eul_scheduler,
logger, device, args) logger, device, args)
epoch_loss = train_loss epoch_loss = train_loss
if args.val: if args.val:
val_loss = validate(epoch, val_loader, model, dis2den, criterion, val_loss = validate(epoch, val_loader, model, lag2eul, criterion,
logger, device, args) logger, device, args)
epoch_loss = val_loss epoch_loss = val_loss
if args.reduce_lr_on_plateau: if args.reduce_lr_on_plateau:
scheduler.step(epoch_loss[0]) lag_scheduler.step(epoch_loss[0])
eul_scheduler.step(epoch_loss[1])
if rank == 0: if rank == 0:
logger.flush() logger.flush()
if min_loss is None or epoch_loss[0] < min_loss[0]: if min_loss is None or torch.prod(epoch_loss) < torch.prod(min_loss):
min_loss = epoch_loss min_loss = epoch_loss
state = { state = {
@ -224,14 +233,15 @@ def gpu_worker(local_rank, node, args):
dist.destroy_process_group() dist.destroy_process_group()
def train(epoch, loader, model, dis2den, criterion, optimizer, scheduler, def train(epoch, loader, model, lag2eul, criterion,
lag_optimizer, eul_optimizer, lag_scheduler, eul_scheduler,
logger, device, args): logger, device, args):
model.train() model.train()
rank = dist.get_rank() rank = dist.get_rank()
world_size = dist.get_world_size() world_size = dist.get_world_size()
epoch_loss = torch.zeros(5, dtype=torch.float64, device=device) epoch_loss = torch.zeros(2, dtype=torch.float64, device=device)
for i, (input, target) in enumerate(loader): for i, (input, target) in enumerate(loader):
input = input.to(device, non_blocking=True) input = input.to(device, non_blocking=True)
@ -248,52 +258,83 @@ def train(epoch, loader, model, dis2den, criterion, optimizer, scheduler,
input = resample(input, model.module.scale_factor, narrow=False) input = resample(input, model.module.scale_factor, narrow=False)
input, output, target = narrow_cast(input, output, target) input, output, target = narrow_cast(input, output, target)
output, target = dis2den(output, target) lag_out, lag_tgt = output, target
loss = criterion(output, target) if i % 2 == 0:
epoch_loss[0] += loss.item() lag_loss = criterion(lag_out, lag_tgt)
epoch_loss[0] += lag_loss.item()
optimizer.zero_grad() with torch.no_grad():
loss.backward() eul_out, eul_tgt = lag2eul(lag_out, lag_tgt)
optimizer.step()
eul_loss = criterion(eul_out, eul_tgt)
epoch_loss[1] += eul_loss.item()
lag_optimizer.zero_grad()
lag_loss.backward()
lag_optimizer.step()
lag_grads = get_grads(model)
else:
with torch.no_grad():
lag_loss = criterion(lag_out, lag_tgt)
epoch_loss[0] += lag_loss.item()
eul_out, eul_tgt = lag2eul(lag_out, lag_tgt)
eul_loss = criterion(eul_out, eul_tgt)
epoch_loss[1] += eul_loss.item()
eul_optimizer.zero_grad()
eul_loss.backward()
eul_optimizer.step()
eul_grads = get_grads(model)
batch = epoch * len(loader) + i + 1 batch = epoch * len(loader) + i + 1
if batch % args.log_interval == 0: if batch % args.log_interval == 0 and batch >= 2:
dist.all_reduce(loss) dist.all_reduce(lag_loss)
loss /= world_size dist.all_reduce(eul_loss)
lag_loss /= world_size
eul_loss /= world_size
if rank == 0: if rank == 0:
logger.add_scalar('loss/batch/train', loss.item(), logger.add_scalar('loss/batch/train/lag', lag_loss.item(),
global_step=batch)
logger.add_scalar('loss/batch/train/eul', eul_loss.item(),
global_step=batch) global_step=batch)
# gradients of the weights of the first and the last layer logger.add_scalar('grad/lag/first', lag_grads[0],
grads = list(p.grad for n, p in model.named_parameters() global_step=batch)
if '.weight' in n) logger.add_scalar('grad/lag/last', lag_grads[-1],
grads = [grads[0], grads[-1]] global_step=batch)
grads = [g.detach().norm().item() for g in grads] logger.add_scalar('grad/eul/first', eul_grads[0],
logger.add_scalar('grad/first', grads[0], global_step=batch) global_step=batch)
logger.add_scalar('grad/last', grads[-1], global_step=batch) logger.add_scalar('grad/eul/last', eul_grads[-1],
global_step=batch)
dist.all_reduce(epoch_loss) dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * world_size epoch_loss /= len(loader) * world_size
if rank == 0: if rank == 0:
logger.add_scalar('loss/epoch/train', epoch_loss[0], logger.add_scalar('loss/epoch/train/lag', epoch_loss[0],
global_step=epoch+1)
logger.add_scalar('loss/epoch/train/eul', epoch_loss[1],
global_step=epoch+1) global_step=epoch+1)
logger.add_figure('fig/epoch/train', plt_slices( logger.add_figure('fig/epoch/train', plt_slices(
input[-1], output[-1], target[-1], output[-1] - target[-1], input[-1], lag_out[-1], lag_tgt[-1], lag_out[-1] - lag_tgt[-1],
title=['in', 'out', 'tgt', 'out - tgt'], eul_out[-1], eul_tgt[-1], eul_out[-1] - eul_tgt[-1],
title=['in', 'lag_out', 'lag_tgt', 'lag_out - lag_tgt',
'eul_out', 'eul_tgt', 'eul_out - eul_tgt'],
), global_step=epoch+1) ), global_step=epoch+1)
return epoch_loss return epoch_loss
def validate(epoch, loader, model, dis2den, criterion, logger, device, args): def validate(epoch, loader, model, lag2eul, criterion, logger, device, args):
model.eval() model.eval()
rank = dist.get_rank() rank = dist.get_rank()
world_size = dist.get_world_size() world_size = dist.get_world_size()
epoch_loss = torch.zeros(5, dtype=torch.float64, device=device) epoch_loss = torch.zeros(2, dtype=torch.float64, device=device)
with torch.no_grad(): with torch.no_grad():
for input, target in loader: for input, target in loader:
@ -307,20 +348,29 @@ def validate(epoch, loader, model, dis2den, criterion, logger, device, args):
input = resample(input, model.module.scale_factor, narrow=False) input = resample(input, model.module.scale_factor, narrow=False)
input, output, target = narrow_cast(input, output, target) input, output, target = narrow_cast(input, output, target)
output, target = dis2den(output, target) lag_out, lag_tgt = output, target
loss = criterion(output, target) lag_loss = criterion(lag_out, lag_tgt)
epoch_loss[0] += loss.item() epoch_loss[0] += lag_loss.item()
eul_out, eul_tgt = lag2eul(lag_out, lag_tgt)
eul_loss = criterion(eul_out, eul_tgt)
epoch_loss[1] += eul_loss.item()
dist.all_reduce(epoch_loss) dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * world_size epoch_loss /= len(loader) * world_size
if rank == 0: if rank == 0:
logger.add_scalar('loss/epoch/val', epoch_loss[0], logger.add_scalar('loss/epoch/val/lag', epoch_loss[0],
global_step=epoch+1)
logger.add_scalar('loss/epoch/val/eul', epoch_loss[1],
global_step=epoch+1) global_step=epoch+1)
logger.add_figure('fig/epoch/val', plt_slices( logger.add_figure('fig/epoch/val', plt_slices(
input[-1], output[-1], target[-1], output[-1] - target[-1], input[-1], lag_out[-1], lag_tgt[-1], lag_out[-1] - lag_tgt[-1],
title=['in', 'out', 'tgt', 'out - tgt'], eul_out[-1], eul_tgt[-1], eul_out[-1] - eul_tgt[-1],
title=['in', 'lag_out', 'lag_tgt', 'lag_out - lag_tgt',
'eul_out', 'eul_tgt', 'eul_out - eul_tgt'],
), global_step=epoch+1) ), global_step=epoch+1)
return epoch_loss return epoch_loss
@ -363,3 +413,13 @@ def dist_init(rank, args):
def set_requires_grad(module, requires_grad=False): def set_requires_grad(module, requires_grad=False):
for param in module.parameters(): for param in module.parameters():
param.requires_grad = requires_grad param.requires_grad = requires_grad
def get_grads(model):
"""gradients of the weights of the first and the last layer
"""
grads = list(p.grad for n, p in model.named_parameters()
if '.weight' in n)
grads = [grads[0], grads[-1]]
grads = [g.detach().norm().item() for g in grads]
return grads