Add lagrangian and eulerian alternate training
This commit is contained in:
parent
337d65de68
commit
2d5234812b
1 changed files with 99 additions and 39 deletions
138
map2map/train.py
138
map2map/train.py
|
@ -118,21 +118,29 @@ def gpu_worker(local_rank, node, args):
|
|||
model = DistributedDataParallel(model, device_ids=[device],
|
||||
process_group=dist.new_group())
|
||||
|
||||
dis2den = Lag2Eul()
|
||||
lag2eul = Lag2Eul()
|
||||
|
||||
criterion = import_attr(args.criterion, nn.__name__, args.callback_at)
|
||||
criterion = criterion()
|
||||
criterion.to(device)
|
||||
|
||||
optimizer = import_attr(args.optimizer, optim.__name__, args.callback_at)
|
||||
optimizer = optimizer(
|
||||
lag_optimizer = optimizer(
|
||||
model.parameters(),
|
||||
lr=args.lr,
|
||||
#momentum=args.momentum,
|
||||
betas=(0.5, 0.999),
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=args.weight_decay,
|
||||
)
|
||||
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
|
||||
eul_optimizer = optimizer(
|
||||
model.parameters(),
|
||||
lr=args.lr,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=args.weight_decay,
|
||||
)
|
||||
lag_scheduler = optim.lr_scheduler.ReduceLROnPlateau(lag_optimizer,
|
||||
factor=0.1, patience=10, verbose=True)
|
||||
eul_scheduler = optim.lr_scheduler.ReduceLROnPlateau(eul_optimizer,
|
||||
factor=0.1, patience=10, verbose=True)
|
||||
|
||||
if (args.load_state == ckpt_link and not os.path.isfile(ckpt_link)
|
||||
|
@ -187,23 +195,24 @@ def gpu_worker(local_rank, node, args):
|
|||
for epoch in range(start_epoch, args.epochs):
|
||||
train_sampler.set_epoch(epoch)
|
||||
|
||||
train_loss = train(epoch, train_loader,
|
||||
model, dis2den, criterion, optimizer, scheduler,
|
||||
train_loss = train(epoch, train_loader, model, lag2eul, criterion,
|
||||
lag_optimizer, eul_optimizer, lag_scheduler, eul_scheduler,
|
||||
logger, device, args)
|
||||
epoch_loss = train_loss
|
||||
|
||||
if args.val:
|
||||
val_loss = validate(epoch, val_loader, model, dis2den, criterion,
|
||||
val_loss = validate(epoch, val_loader, model, lag2eul, criterion,
|
||||
logger, device, args)
|
||||
epoch_loss = val_loss
|
||||
|
||||
if args.reduce_lr_on_plateau:
|
||||
scheduler.step(epoch_loss[0])
|
||||
lag_scheduler.step(epoch_loss[0])
|
||||
eul_scheduler.step(epoch_loss[1])
|
||||
|
||||
if rank == 0:
|
||||
logger.flush()
|
||||
|
||||
if min_loss is None or epoch_loss[0] < min_loss[0]:
|
||||
if min_loss is None or torch.prod(epoch_loss) < torch.prod(min_loss):
|
||||
min_loss = epoch_loss
|
||||
|
||||
state = {
|
||||
|
@ -224,14 +233,15 @@ def gpu_worker(local_rank, node, args):
|
|||
dist.destroy_process_group()
|
||||
|
||||
|
||||
def train(epoch, loader, model, dis2den, criterion, optimizer, scheduler,
|
||||
def train(epoch, loader, model, lag2eul, criterion,
|
||||
lag_optimizer, eul_optimizer, lag_scheduler, eul_scheduler,
|
||||
logger, device, args):
|
||||
model.train()
|
||||
|
||||
rank = dist.get_rank()
|
||||
world_size = dist.get_world_size()
|
||||
|
||||
epoch_loss = torch.zeros(5, dtype=torch.float64, device=device)
|
||||
epoch_loss = torch.zeros(2, dtype=torch.float64, device=device)
|
||||
|
||||
for i, (input, target) in enumerate(loader):
|
||||
input = input.to(device, non_blocking=True)
|
||||
|
@ -248,52 +258,83 @@ def train(epoch, loader, model, dis2den, criterion, optimizer, scheduler,
|
|||
input = resample(input, model.module.scale_factor, narrow=False)
|
||||
input, output, target = narrow_cast(input, output, target)
|
||||
|
||||
output, target = dis2den(output, target)
|
||||
lag_out, lag_tgt = output, target
|
||||
|
||||
loss = criterion(output, target)
|
||||
epoch_loss[0] += loss.item()
|
||||
if i % 2 == 0:
|
||||
lag_loss = criterion(lag_out, lag_tgt)
|
||||
epoch_loss[0] += lag_loss.item()
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
with torch.no_grad():
|
||||
eul_out, eul_tgt = lag2eul(lag_out, lag_tgt)
|
||||
|
||||
eul_loss = criterion(eul_out, eul_tgt)
|
||||
epoch_loss[1] += eul_loss.item()
|
||||
|
||||
lag_optimizer.zero_grad()
|
||||
lag_loss.backward()
|
||||
lag_optimizer.step()
|
||||
lag_grads = get_grads(model)
|
||||
else:
|
||||
with torch.no_grad():
|
||||
lag_loss = criterion(lag_out, lag_tgt)
|
||||
epoch_loss[0] += lag_loss.item()
|
||||
|
||||
eul_out, eul_tgt = lag2eul(lag_out, lag_tgt)
|
||||
|
||||
eul_loss = criterion(eul_out, eul_tgt)
|
||||
epoch_loss[1] += eul_loss.item()
|
||||
|
||||
eul_optimizer.zero_grad()
|
||||
eul_loss.backward()
|
||||
eul_optimizer.step()
|
||||
eul_grads = get_grads(model)
|
||||
|
||||
batch = epoch * len(loader) + i + 1
|
||||
if batch % args.log_interval == 0:
|
||||
dist.all_reduce(loss)
|
||||
loss /= world_size
|
||||
if batch % args.log_interval == 0 and batch >= 2:
|
||||
dist.all_reduce(lag_loss)
|
||||
dist.all_reduce(eul_loss)
|
||||
lag_loss /= world_size
|
||||
eul_loss /= world_size
|
||||
if rank == 0:
|
||||
logger.add_scalar('loss/batch/train', loss.item(),
|
||||
logger.add_scalar('loss/batch/train/lag', lag_loss.item(),
|
||||
global_step=batch)
|
||||
logger.add_scalar('loss/batch/train/eul', eul_loss.item(),
|
||||
global_step=batch)
|
||||
|
||||
# gradients of the weights of the first and the last layer
|
||||
grads = list(p.grad for n, p in model.named_parameters()
|
||||
if '.weight' in n)
|
||||
grads = [grads[0], grads[-1]]
|
||||
grads = [g.detach().norm().item() for g in grads]
|
||||
logger.add_scalar('grad/first', grads[0], global_step=batch)
|
||||
logger.add_scalar('grad/last', grads[-1], global_step=batch)
|
||||
logger.add_scalar('grad/lag/first', lag_grads[0],
|
||||
global_step=batch)
|
||||
logger.add_scalar('grad/lag/last', lag_grads[-1],
|
||||
global_step=batch)
|
||||
logger.add_scalar('grad/eul/first', eul_grads[0],
|
||||
global_step=batch)
|
||||
logger.add_scalar('grad/eul/last', eul_grads[-1],
|
||||
global_step=batch)
|
||||
|
||||
dist.all_reduce(epoch_loss)
|
||||
epoch_loss /= len(loader) * world_size
|
||||
if rank == 0:
|
||||
logger.add_scalar('loss/epoch/train', epoch_loss[0],
|
||||
logger.add_scalar('loss/epoch/train/lag', epoch_loss[0],
|
||||
global_step=epoch+1)
|
||||
logger.add_scalar('loss/epoch/train/eul', epoch_loss[1],
|
||||
global_step=epoch+1)
|
||||
|
||||
logger.add_figure('fig/epoch/train', plt_slices(
|
||||
input[-1], output[-1], target[-1], output[-1] - target[-1],
|
||||
title=['in', 'out', 'tgt', 'out - tgt'],
|
||||
input[-1], lag_out[-1], lag_tgt[-1], lag_out[-1] - lag_tgt[-1],
|
||||
eul_out[-1], eul_tgt[-1], eul_out[-1] - eul_tgt[-1],
|
||||
title=['in', 'lag_out', 'lag_tgt', 'lag_out - lag_tgt',
|
||||
'eul_out', 'eul_tgt', 'eul_out - eul_tgt'],
|
||||
), global_step=epoch+1)
|
||||
|
||||
return epoch_loss
|
||||
|
||||
|
||||
def validate(epoch, loader, model, dis2den, criterion, logger, device, args):
|
||||
def validate(epoch, loader, model, lag2eul, criterion, logger, device, args):
|
||||
model.eval()
|
||||
|
||||
rank = dist.get_rank()
|
||||
world_size = dist.get_world_size()
|
||||
|
||||
epoch_loss = torch.zeros(5, dtype=torch.float64, device=device)
|
||||
epoch_loss = torch.zeros(2, dtype=torch.float64, device=device)
|
||||
|
||||
with torch.no_grad():
|
||||
for input, target in loader:
|
||||
|
@ -307,20 +348,29 @@ def validate(epoch, loader, model, dis2den, criterion, logger, device, args):
|
|||
input = resample(input, model.module.scale_factor, narrow=False)
|
||||
input, output, target = narrow_cast(input, output, target)
|
||||
|
||||
output, target = dis2den(output, target)
|
||||
lag_out, lag_tgt = output, target
|
||||
|
||||
loss = criterion(output, target)
|
||||
epoch_loss[0] += loss.item()
|
||||
lag_loss = criterion(lag_out, lag_tgt)
|
||||
epoch_loss[0] += lag_loss.item()
|
||||
|
||||
eul_out, eul_tgt = lag2eul(lag_out, lag_tgt)
|
||||
|
||||
eul_loss = criterion(eul_out, eul_tgt)
|
||||
epoch_loss[1] += eul_loss.item()
|
||||
|
||||
dist.all_reduce(epoch_loss)
|
||||
epoch_loss /= len(loader) * world_size
|
||||
if rank == 0:
|
||||
logger.add_scalar('loss/epoch/val', epoch_loss[0],
|
||||
logger.add_scalar('loss/epoch/val/lag', epoch_loss[0],
|
||||
global_step=epoch+1)
|
||||
logger.add_scalar('loss/epoch/val/eul', epoch_loss[1],
|
||||
global_step=epoch+1)
|
||||
|
||||
logger.add_figure('fig/epoch/val', plt_slices(
|
||||
input[-1], output[-1], target[-1], output[-1] - target[-1],
|
||||
title=['in', 'out', 'tgt', 'out - tgt'],
|
||||
input[-1], lag_out[-1], lag_tgt[-1], lag_out[-1] - lag_tgt[-1],
|
||||
eul_out[-1], eul_tgt[-1], eul_out[-1] - eul_tgt[-1],
|
||||
title=['in', 'lag_out', 'lag_tgt', 'lag_out - lag_tgt',
|
||||
'eul_out', 'eul_tgt', 'eul_out - eul_tgt'],
|
||||
), global_step=epoch+1)
|
||||
|
||||
return epoch_loss
|
||||
|
@ -363,3 +413,13 @@ def dist_init(rank, args):
|
|||
def set_requires_grad(module, requires_grad=False):
|
||||
for param in module.parameters():
|
||||
param.requires_grad = requires_grad
|
||||
|
||||
|
||||
def get_grads(model):
|
||||
"""gradients of the weights of the first and the last layer
|
||||
"""
|
||||
grads = list(p.grad for n, p in model.named_parameters()
|
||||
if '.weight' in n)
|
||||
grads = [grads[0], grads[-1]]
|
||||
grads = [g.detach().norm().item() for g in grads]
|
||||
return grads
|
||||
|
|
Loading…
Reference in a new issue