Add gradient norms to tensorboard

This commit is contained in:
Yin Li 2020-03-02 11:31:38 -05:00
parent 9567db7332
commit 1963530984

View file

@ -348,6 +348,25 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
'real': adv_loss_real.item(),
}, global_step=batch)
# gradients of the weights of the first and the last layer
grads = list(p.grad for n, p in model.named_parameters()
if n.endswith('weight'))
grads = [grads[0], grads[1]]
grads = [g.detach().norm().item() for g in grads]
logger.add_scalars('grad', {
'first': grads[0],
'last': grads[1],
}, global_step=batch)
if args.adv and epoch >= args.adv_start:
grads = list(p.grad for n, p in adv_model.named_parameters()
if n.endswith('weight'))
grads = [grads[0], grads[1]]
grads = [g.detach().norm().item() for g in grads]
logger.add_scalars('grad/adv', {
'first': grads[0],
'last': grads[1],
}, global_step=batch)
dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * world_size
if rank == 0: