Add gradient norms to tensorboard
This commit is contained in:
parent
9567db7332
commit
1963530984
1 changed files with 19 additions and 0 deletions
|
@ -348,6 +348,25 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
|
|||
'real': adv_loss_real.item(),
|
||||
}, global_step=batch)
|
||||
|
||||
# gradients of the weights of the first and the last layer
|
||||
grads = list(p.grad for n, p in model.named_parameters()
|
||||
if n.endswith('weight'))
|
||||
grads = [grads[0], grads[1]]
|
||||
grads = [g.detach().norm().item() for g in grads]
|
||||
logger.add_scalars('grad', {
|
||||
'first': grads[0],
|
||||
'last': grads[1],
|
||||
}, global_step=batch)
|
||||
if args.adv and epoch >= args.adv_start:
|
||||
grads = list(p.grad for n, p in adv_model.named_parameters()
|
||||
if n.endswith('weight'))
|
||||
grads = [grads[0], grads[1]]
|
||||
grads = [g.detach().norm().item() for g in grads]
|
||||
logger.add_scalars('grad/adv', {
|
||||
'first': grads[0],
|
||||
'last': grads[1],
|
||||
}, global_step=batch)
|
||||
|
||||
dist.all_reduce(epoch_loss)
|
||||
epoch_loss /= len(loader) * world_size
|
||||
if rank == 0:
|
||||
|
|
Loading…
Reference in a new issue