Add optional adversary model and make validation optional

This commit is contained in:
Yin Li 2020-01-09 20:24:46 -05:00
parent 9cf97b3ac1
commit 15384dc9bd
4 changed files with 262 additions and 60 deletions

View file

@ -17,17 +17,19 @@ def get_args():
def add_common_args(parser):
parser.add_argument('--norms', type=str_list, help='comma-sep. list '
'of normalization functions from data.norms')
'of normalization functions from .data.norms')
parser.add_argument('--crop', type=int,
help='size to crop the input and target data')
parser.add_argument('--pad', default=0, type=int,
help='pad the input data assuming periodic boundary condition')
help='size to pad the input data beyond the crop size, assuming '
'periodic boundary condition')
parser.add_argument('--model', required=True, help='model from models')
parser.add_argument('--criterion', default='MSELoss',
parser.add_argument('--model', required=True, type=str,
help='model from .models')
parser.add_argument('--criterion', default='MSELoss', type=str,
help='model criterion from torch.nn')
parser.add_argument('--load-state', default='', type=str,
help='path to load model, optimizer, rng, etc.')
help='path to load the states of model, optimizer, rng, etc.')
parser.add_argument('--batches', default=1, type=int,
help='mini-batch size, per GPU in training or in total in testing')
@ -46,16 +48,23 @@ def add_train_args(parser):
help='comma-sep. list of glob patterns for training input data')
parser.add_argument('--train-tgt-patterns', type=str_list, required=True,
help='comma-sep. list of glob patterns for training target data')
parser.add_argument('--val-in-patterns', type=str_list, required=True,
parser.add_argument('--val-in-patterns', type=str_list,
help='comma-sep. list of glob patterns for validation input data')
parser.add_argument('--val-tgt-patterns', type=str_list, required=True,
parser.add_argument('--val-tgt-patterns', type=str_list,
help='comma-sep. list of glob patterns for validation target data')
parser.add_argument('--augment', action='store_true',
help='enable training data augmentation')
parser.add_argument('--adv-model', type=str,
help='enable adversary model from .models')
parser.add_argument('--adv-criterion', default='BCEWithLogitsLoss', type=str,
help='adversary criterion from torch.nn')
parser.add_argument('--cgan', action='store_true',
help='enable conditional GAN')
parser.add_argument('--epochs', default=128, type=int,
help='total number of epochs to run')
parser.add_argument('--optimizer', default='Adam',
parser.add_argument('--optimizer', default='Adam', type=str,
help='optimizer from torch.optim')
parser.add_argument('--lr', default=0.001, type=float,
help='initial learning rate')
@ -63,6 +72,10 @@ def add_train_args(parser):
# help='momentum')
parser.add_argument('--weight-decay', default=0., type=float,
help='weight decay')
parser.add_argument('--adv-lr', type=float,
help='initial adversary learning rate')
parser.add_argument('--adv-weight-decay', type=float,
help='adversary weight decay')
parser.add_argument('--seed', default=42, type=int,
help='seed for initializing training')
@ -70,7 +83,7 @@ def add_train_args(parser):
help='enable data division among GPUs, useful with cache')
parser.add_argument('--dist-backend', default='nccl', type=str,
choices=['gloo', 'nccl'], help='distributed backend')
parser.add_argument('--log-interval', default=20, type=int,
parser.add_argument('--log-interval', default=100, type=int,
help='interval between logging training loss')

View file

@ -37,6 +37,8 @@ class FieldDataset(Dataset):
assert len(self.in_files) == len(self.tgt_files), \
'input and target sample sizes do not match'
assert len(self.in_files) > 0, 'file not found'
if div_data:
files = len(self.in_files) // world_size
self.in_files = self.in_files[rank * files : (rank + 1) * files]
@ -151,7 +153,7 @@ def flip(fields, axes, ndim):
new_fields = []
for x in fields:
if x.size(0) == ndim: # flip vector components
if x.shape[0] == ndim: # flip vector components
x[axes] = - x[axes]
axes = (1 + axes).tolist()
@ -167,7 +169,7 @@ def perm(fields, axes, ndim):
new_fields = []
for x in fields:
if x.size(0) == ndim: # permutate vector components
if x.shape[0] == ndim: # permutate vector components
x = x[axes]
axes = [0] + (1 + axes).tolist()

View file

@ -39,7 +39,9 @@ class ConvBlock(nn.Module):
in_channels, out_channels = self._setup_conv()
return nn.Conv3d(in_channels, out_channels, self.kernel_size)
elif l == 'B':
return nn.BatchNorm3d(self.bn_channels)
#return nn.BatchNorm3d(self.bn_channels)
#return nn.InstanceNorm3d(self.bn_channels, affine=True, track_running_stats=True)
return nn.InstanceNorm3d(self.bn_channels)
elif l == 'A':
return Swish()
else:
@ -109,8 +111,8 @@ def narrow_like(a, b):
Try to be symmetric but cut more on the right for odd difference,
consistent with the downsampling.
"""
for dim in range(2, 5):
width = a.size(dim) - b.size(dim)
for d in range(2, a.dim()):
width = a.shape[d] - b.shape[d]
half_width = width // 2
a = a.narrow(dim, half_width, a.size(dim) - width)
a = a.narrow(d, half_width, a.shape[d] - width)
return a

View file

@ -1,8 +1,9 @@
import os
import shutil
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.multiprocessing import spawn
from torch.distributed import init_process_group, destroy_process_group, all_reduce
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
@ -35,7 +36,7 @@ def gpu_worker(local_rank, args):
args.rank = args.gpus_per_node * args.node + local_rank
init_process_group(
dist.init_process_group(
backend=args.dist_backend,
init_method='env://',
world_size=args.world_size,
@ -59,23 +60,26 @@ def gpu_worker(local_rank, args):
pin_memory=True
)
val_dataset = FieldDataset(
in_patterns=args.val_in_patterns,
tgt_patterns=args.val_tgt_patterns,
augment=False,
**{k:v for k, v in vars(args).items() if k != 'augment'},
)
if not args.div_data:
#val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_sampler = DistributedSampler(val_dataset)
val_loader = DataLoader(
val_dataset,
batch_size=args.batches,
shuffle=False,
sampler=None if args.div_data else val_sampler,
num_workers=args.loader_workers,
pin_memory=True
)
args.val = args.val_in_patterns is not None and \
args.val_tgt_patterns is not None
if args.val:
val_dataset = FieldDataset(
in_patterns=args.val_in_patterns,
tgt_patterns=args.val_tgt_patterns,
augment=False,
**{k: v for k, v in vars(args).items() if k != 'augment'},
)
if not args.div_data:
#val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_sampler = DistributedSampler(val_dataset)
val_loader = DataLoader(
val_dataset,
batch_size=args.batches,
shuffle=False,
sampler=None if args.div_data else val_sampler,
num_workers=args.loader_workers,
pin_memory=True
)
in_channels, out_channels = train_dataset.channels
@ -93,17 +97,50 @@ def gpu_worker(local_rank, args):
model.parameters(),
lr=args.lr,
#momentum=args.momentum,
betas=(0.5, 0.999),
weight_decay=args.weight_decay,
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.5, patience=3, verbose=True)
adv_model = adv_criterion = adv_optimizer = adv_scheduler = None
args.adv = args.adv_model is not None
if args.adv:
adv_model = getattr(models, args.adv_model)
adv_model = adv_model(in_channels + out_channels
if args.cgan else out_channels, 1)
adv_model.to(args.device)
adv_model = DistributedDataParallel(adv_model, device_ids=[args.device])
adv_criterion = getattr(torch.nn, args.adv_criterion)
adv_criterion = adv_criterion()
adv_criterion.to(args.device)
if args.adv_lr is None:
args.adv_lr = args.lr
if args.adv_weight_decay is None:
args.adv_weight_decay = args.weight_decay
adv_optimizer = getattr(torch.optim, args.optimizer)
adv_optimizer = adv_optimizer(
adv_model.parameters(),
lr=args.adv_lr,
betas=(0.5, 0.999),
weight_decay=args.adv_weight_decay,
)
adv_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(adv_optimizer,
factor=0.5, patience=3, verbose=True)
if args.load_state:
state = torch.load(args.load_state, map_location=args.device)
args.start_epoch = state['epoch']
model.module.load_state_dict(state['model'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
if 'adv_model' in state and args.adv:
adv_model.module.load_state_dict(state['adv_model'])
adv_optimizer.load_state_dict(state['adv_optimizer'])
adv_scheduler.load_state_dict(state['adv_scheduler'])
torch.set_rng_state(state['rng'].cpu()) # move rng state back
if args.rank == 0:
min_loss = state['min_loss']
@ -111,6 +148,15 @@ def gpu_worker(local_rank, args):
state['epoch'], args.load_state))
del state
else:
# def init_weights(m):
# classname = m.__class__.__name__
# if isinstance(m, (torch.nn.Conv3d, torch.nn.ConvTranspose3d)):
# m.weight.data.normal_(0.0, 0.02)
# elif isinstance(m, torch.nn.BatchNorm3d):
# m.weight.data.normal_(1.0, 0.02)
# m.bias.data.fill_(0)
# model.apply(init_weights)
#
args.start_epoch = 0
if args.rank == 0:
min_loss = None
@ -119,47 +165,68 @@ def gpu_worker(local_rank, args):
if args.rank == 0:
args.logger = SummaryWriter()
#hparam = {k: v if isinstance(v, (int, float, str, bool, torch.Tensor))
# else str(v) for k, v in vars(args).items()}
#args.logger.add_hparams(hparam_dict=hparam, metric_dict={})
for epoch in range(args.start_epoch, args.epochs):
if not args.div_data:
train_sampler.set_epoch(epoch)
train(epoch, train_loader, model, criterion, optimizer, scheduler, args)
val_loss = validate(epoch, val_loader, model, criterion, args)
train_loss = train(epoch, train_loader,
model, criterion, optimizer, scheduler,
adv_model, adv_criterion, adv_optimizer, adv_scheduler,
args)
epoch_loss = train_loss
scheduler.step(val_loss)
if args.val:
val_loss = validate(epoch, val_loader,
model, criterion, adv_model, adv_criterion,
args)
epoch_loss = val_loss
scheduler.step(epoch_loss[0])
if args.rank == 0:
print(end='', flush=True)
args.logger.close()
is_best = min_loss is None or epoch_loss[0] < min_loss[0]
if is_best:
min_loss = epoch_loss
state = {
'epoch': epoch + 1,
'model': model.module.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
'rng' : torch.get_rng_state(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'rng': torch.get_rng_state(),
'min_loss': min_loss,
}
if args.adv:
state.update({
'adv_model': adv_model.module.state_dict(),
'adv_optimizer': adv_optimizer.state_dict(),
'adv_scheduler': adv_scheduler.state_dict(),
})
ckpt_file = 'checkpoint.pth'
best_file = 'best_model_{}.pth'
torch.save(state, ckpt_file)
del state
if min_loss is None or val_loss < min_loss:
min_loss = val_loss
if is_best:
shutil.copyfile(ckpt_file, best_file.format(epoch + 1))
#if os.path.isfile(best_file.format(epoch)):
# os.remove(best_file.format(epoch))
destroy_process_group()
dist.destroy_process_group()
def train(epoch, loader, model, criterion, optimizer, scheduler, args):
def train(epoch, loader, model, criterion, optimizer, scheduler,
adv_model, adv_criterion, adv_optimizer, adv_scheduler, args):
model.train()
if args.adv:
adv_model.train()
# loss, loss_adv, adv_loss, adv_loss_fake, adv_loss_real
epoch_loss = torch.zeros(5, dtype=torch.float64, device=args.device)
for i, (input, target) in enumerate(loader):
input = input.to(args.device, non_blocking=True)
@ -169,40 +236,158 @@ def train(epoch, loader, model, criterion, optimizer, scheduler, args):
target = narrow_like(target, output) # FIXME pad
loss = criterion(output, target)
epoch_loss[0] += loss.item()
if args.adv:
if args.cgan:
if hasattr(model, 'scale_factor') and model.scale_factor != 1:
input = F.interpolate(input,
scale_factor=model.scale_factor, mode='trilinear')
input = narrow_like(input, output)
output = torch.cat([input, output], dim=1)
target = torch.cat([input, target], dim=1)
# discriminator
#
# outtgt = torch.cat([output.detach(), target], dim=0)
#
# eval_outtgt = adv_model(outtgt)
#
# fake = torch.zeros(1, dtype=torch.float32, device=args.device)
# fake = fake.expand_as(output.shape[0] + eval_outtgt.shape[1:])
# real = torch.ones(1, dtype=torch.float32, device=args.device)
# real = real.expand_as(target.shape[0] + eval_outtgt.shape[1:])
# fakereal = torch.cat([fake, real], dim=0)
eval_out = adv_model(output.detach())
fake = torch.zeros(1, dtype=torch.float32,
device=args.device).expand_as(eval_out)
adv_loss_fake = adv_criterion(eval_out, fake) # FIXME try min
epoch_loss[3] += adv_loss_fake.item()
eval_tgt = adv_model(target)
real = torch.ones(1, dtype=torch.float32,
device=args.device).expand_as(eval_tgt)
adv_loss_real = adv_criterion(eval_tgt, real) # FIXME try min
epoch_loss[4] += adv_loss_real.item()
adv_loss = 0.5 * (adv_loss_fake + adv_loss_real)
epoch_loss[2] += adv_loss.item()
adv_optimizer.zero_grad()
adv_loss = 0.001 * adv_loss + 0.999 * adv_loss.item()
adv_loss.backward()
adv_optimizer.step()
# generator adversarial loss
eval_out = adv_model(output)
loss_adv = adv_criterion(eval_out, real) # FIXME try min
epoch_loss[1] += loss_adv.item()
# loss_fac = loss.item() / (loss.item() + loss_adv.item())
# loss = 0.5 * (loss * (1 + loss_fac) + loss_adv * loss_fac) # FIXME does this work?
loss += 0.001 * (loss_adv - loss_adv.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
#if scheduler is not None: # for batch scheduler
#scheduler.step()
batch = epoch * len(loader) + i + 1
if batch % args.log_interval == 0:
all_reduce(loss)
dist.all_reduce(loss)
loss /= args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/train', loss.item(), global_step=batch)
args.logger.add_scalar('loss/batch/train', loss.item(),
global_step=batch)
if args.adv:
args.logger.add_scalar('loss/batch/train/adv/G',
loss_adv.item(), global_step=batch)
args.logger.add_scalars('loss/batch/train/adv/D', {
'total': adv_loss.item(),
'fake': adv_loss_fake.item(),
'real': adv_loss_real.item(),
}, global_step=batch)
dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/epoch/train', epoch_loss[0],
global_step=epoch+1)
if args.adv:
args.logger.add_scalar('loss/epoch/train/adv/G', epoch_loss[1],
global_step=epoch+1)
args.logger.add_scalars('loss/epoch/train/adv/D', {
'total': epoch_loss[2],
'fake': epoch_loss[3],
'real': epoch_loss[4],
}, global_step=epoch+1)
return epoch_loss
def validate(epoch, loader, model, criterion, args):
def validate(epoch, loader, model, criterion, adv_model, adv_criterion, args):
model.eval()
if args.adv:
adv_model.eval()
loss = 0
# loss, loss_adv, adv_loss, adv_loss_fake, adv_loss_real
epoch_loss = torch.zeros(5, dtype=torch.float64, device=args.device)
with torch.no_grad():
for i, (input, target) in enumerate(loader):
for input, target in loader:
input = input.to(args.device, non_blocking=True)
target = target.to(args.device, non_blocking=True)
output = model(input)
target = narrow_like(target, output) # FIXME pad
loss += criterion(output, target)
loss = criterion(output, target)
epoch_loss[0] += loss.item()
all_reduce(loss)
loss /= len(loader) * args.world_size
if args.adv:
if args.cgan:
if hasattr(model, 'scale_factor') and model.scale_factor != 1:
input = F.interpolate(input,
scale_factor=model.scale_factor, mode='trilinear')
input = narrow_like(input, output)
output = torch.cat([input, output], dim=1)
target = torch.cat([input, target], dim=1)
# discriminator
eval_out = adv_model(output)
fake = torch.zeros(1, dtype=torch.float32,
device=args.device).expand_as(eval_out) # FIXME criterion wrapper: both D&G; min reduction; expand_as
adv_loss_fake = adv_criterion(eval_out, fake) # FIXME try min
epoch_loss[3] += adv_loss_fake.item()
eval_tgt = adv_model(target)
real = torch.ones(1, dtype=torch.float32,
device=args.device).expand_as(eval_tgt)
adv_loss_real = adv_criterion(eval_tgt, real) # FIXME try min
epoch_loss[4] += adv_loss_real.item()
adv_loss = 0.5 * (adv_loss_fake + adv_loss_real)
epoch_loss[2] += adv_loss.item()
# generator adversarial loss
loss_adv = adv_criterion(eval_out, real) # FIXME try min
epoch_loss[1] += loss_adv.item()
dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/val', loss.item(), global_step=epoch+1)
args.logger.add_scalar('loss/epoch/val', epoch_loss[0],
global_step=epoch+1)
if args.adv:
args.logger.add_scalar('loss/epoch/val/adv/G', epoch_loss[1],
global_step=epoch+1)
args.logger.add_scalars('loss/epoch/val/adv/D', {
'total': epoch_loss[2],
'fake': epoch_loss[3],
'real': epoch_loss[4],
}, global_step=epoch+1)
return loss.item()
return epoch_loss