Change default number of dataloader workers
as suggested by pytorch
This commit is contained in:
parent
3eaca964ed
commit
0410435a8a
1 changed files with 3 additions and 5 deletions
|
@ -81,10 +81,9 @@ def add_common_args(parser):
|
|||
# "batches" is kept for now for backward compatibility
|
||||
parser.add_argument('--batch-size', '--batches', type=int, required=True,
|
||||
help='mini-batch size, per GPU in training or in total in testing')
|
||||
parser.add_argument('--loader-workers', default=-8, type=int,
|
||||
parser.add_argument('--loader-workers', default=8, type=int,
|
||||
help='number of subprocesses per data loader. '
|
||||
'0 to disable multiprocessing; '
|
||||
'negative number to multiply by the batch size')
|
||||
'0 to disable multiprocessing')
|
||||
|
||||
parser.add_argument('--callback-at', type=lambda s: os.path.abspath(s),
|
||||
help='directory of custorm code defining callbacks for models, '
|
||||
|
@ -186,8 +185,7 @@ def int_tuple(s):
|
|||
|
||||
|
||||
def set_common_args(args):
|
||||
if args.loader_workers < 0:
|
||||
args.loader_workers *= - args.batch_size
|
||||
pass
|
||||
|
||||
|
||||
def set_train_args(args):
|
||||
|
|
Loading…
Reference in a new issue