Change VNet based on experiment on displacement

This commit is contained in:
Yin Li 2020-08-17 19:28:10 -07:00
parent ebd962e333
commit 01cc1b6964
3 changed files with 59 additions and 74 deletions

View file

@ -1,5 +1,5 @@
from .unet import UNet
from .vnet import VNet, VNetFat
from .vnet import VNet
from .patchgan import PatchGAN, PatchGAN42
from .narrow import narrow_by, narrow_cast, narrow_like
@ -7,8 +7,6 @@ from .resample import resample, Resampler
from .lag2eul import Lag2Eul
from .lag2eul import Lag2Eul
from .dice import DiceLoss, dice_loss
from .adversary import adv_model_wrapper, adv_criterion_wrapper

View file

@ -6,22 +6,37 @@ from .narrow import narrow_like
class UNet(nn.Module):
def __init__(self, in_chan, out_chan, **kwargs):
def __init__(self, in_chan, out_chan, bypass=None, **kwargs):
"""U-Net like network
Note:
Global bypass connection adding the input to the output (similar to
COLA for displacement input and output) from Alvaro Sanchez Gonzalez.
Enabled by default when in_chan equals out_chan
Global bypass, under additive symmetry, effectively obviates --aug-add
"""
super().__init__()
self.conv_l0 = ConvBlock(in_chan, 64, seq='CAC')
self.down_l0 = ConvBlock(64, seq='BADBA')
self.conv_l1 = ConvBlock(64, seq='CBAC')
self.down_l1 = ConvBlock(64, seq='BADBA')
self.conv_l0 = ConvBlock(in_chan, 64, seq='CACBA')
self.down_l0 = ConvBlock(64, seq='DBA')
self.conv_l1 = ConvBlock(64, seq='CBACBA')
self.down_l1 = ConvBlock(64, seq='DBA')
self.conv_c = ConvBlock(64, seq='CBAC')
self.conv_c = ConvBlock(64, seq='CBACBA')
self.up_r1 = ConvBlock(64, seq='BAUBA')
self.conv_r1 = ConvBlock(128, 64, seq='CBAC')
self.up_r0 = ConvBlock(64, seq='BAUBA')
self.up_r1 = ConvBlock(64, seq='UBA')
self.conv_r1 = ConvBlock(128, 64, seq='CBACBA')
self.up_r0 = ConvBlock(64, seq='UBA')
self.conv_r0 = ConvBlock(128, out_chan, seq='CAC')
self.bypass = in_chan == out_chan
def forward(self, x):
if self.bypass:
x0 = x
y0 = self.conv_l0(x)
x = self.down_l0(y0)
@ -42,4 +57,8 @@ class UNet(nn.Module):
del y0
x = self.conv_r0(x)
if self.bypass:
x0 = narrow_like(x0, x)
x += x0
return x

View file

@ -6,77 +6,41 @@ from .narrow import narrow_like
class VNet(nn.Module):
def __init__(self, in_chan, out_chan, **kwargs):
def __init__(self, in_chan, out_chan, bypass=None, **kwargs):
"""V-Net like network
Note:
Global bypass connection adding the input to the output (similar to
COLA for displacement input and output) from Alvaro Sanchez Gonzalez.
Enabled by default when in_chan equals out_chan
Global bypass, under additive symmetry, effectively obviates --aug-add
Non-identity skip connection in residual blocks
"""
super().__init__()
self.conv_l0 = ResBlock(in_chan, 64, seq='CAC')
self.down_l0 = ConvBlock(64, seq='BADBA')
self.conv_l1 = ResBlock(64, seq='CBAC')
self.down_l1 = ConvBlock(64, seq='BADBA')
self.conv_c = ResBlock(64, seq='CBAC')
self.up_r1 = ConvBlock(64, seq='BAUBA')
self.conv_r1 = ResBlock(128, 64, seq='CBAC')
self.up_r0 = ConvBlock(64, seq='BAUBA')
self.conv_r0 = ResBlock(128, out_chan, seq='CAC')
def forward(self, x):
y0 = self.conv_l0(x)
x = self.down_l0(y0)
y1 = self.conv_l1(x)
x = self.down_l1(y1)
x = self.conv_c(x)
x = self.up_r1(x)
y1 = narrow_like(y1, x)
x = torch.cat([y1, x], dim=1)
del y1
x = self.conv_r1(x)
x = self.up_r0(x)
y0 = narrow_like(y0, x)
x = torch.cat([y0, x], dim=1)
del y0
x = self.conv_r0(x)
return x
class VNetFat(nn.Module):
def __init__(self, in_chan, out_chan, **kwargs):
super().__init__()
self.conv_l0 = nn.Sequential(
ResBlock(in_chan, 64, seq='CACBA'),
ResBlock(64, seq='CBACBA'),
)
# activate non-identity skip connection in residual block
# by explicitly setting out_chan
self.conv_l0 = ResBlock(in_chan, 64, seq='CACBA')
self.down_l0 = ConvBlock(64, seq='DBA')
self.conv_l1 = nn.Sequential(
ResBlock(64, seq='CBACBA'),
ResBlock(64, seq='CBACBA'),
) # FIXME: test CBACBA+DBA vs CBAC+BADBA
self.conv_l1 = ResBlock(64, 64, seq='CBACBA')
self.down_l1 = ConvBlock(64, seq='DBA')
self.conv_c = nn.Sequential(
ResBlock(64, seq='CBACBA'),
ResBlock(64, seq='CBACBA'),
)
self.conv_c = ResBlock(64, 64, seq='CBACBA')
self.up_r1 = ConvBlock(64, seq='UBA')
self.conv_r1 = nn.Sequential(
ResBlock(128, seq='CBACBA'),
ResBlock(128, seq='CBACBA'),
)
self.up_r0 = ConvBlock(128, 64, seq='UBA')
self.conv_r0 = nn.Sequential(
ResBlock(128, seq='CBACBA'),
ResBlock(128, out_chan, seq='CAC'),
)
self.conv_r1 = ResBlock(128, 64, seq='CBACBA')
self.up_r0 = ConvBlock(64, seq='UBA')
self.conv_r0 = ResBlock(128, out_chan, seq='CAC')
self.bypass = in_chan == out_chan
def forward(self, x):
if self.bypass:
x0 = x
y0 = self.conv_l0(x)
x = self.down_l0(y0)
@ -97,4 +61,8 @@ class VNetFat(nn.Module):
del y0
x = self.conv_r0(x)
if self.bypass:
x0 = narrow_like(x0, x)
x += x0
return x