2020-01-23 01:47:27 +01:00
|
|
|
#!/bin/bash
|
|
|
|
|
|
|
|
#SBATCH --job-name=srsgan
|
|
|
|
#SBATCH --output=%x-%j.out
|
|
|
|
|
|
|
|
#SBATCH --partition=rtx
|
2020-01-27 17:15:46 +01:00
|
|
|
##SBATCH --gres=gpu:4
|
2020-01-23 01:47:27 +01:00
|
|
|
|
|
|
|
#SBATCH --exclusive
|
2020-01-27 17:15:46 +01:00
|
|
|
#SBATCH --nodes=2
|
|
|
|
#SBATCH --ntasks-per-node=1
|
|
|
|
#SBATCH --time=2-00:00:00
|
2020-01-23 01:47:27 +01:00
|
|
|
|
|
|
|
|
|
|
|
hostname; pwd; date
|
|
|
|
|
|
|
|
|
|
|
|
#module load gcc python3
|
2020-01-27 17:15:46 +01:00
|
|
|
source $HOME/anaconda3/bin/activate
|
2020-01-23 01:47:27 +01:00
|
|
|
|
|
|
|
|
|
|
|
data_root_dir="/scratch1/06431/yueyingn/dmo-50MPC-train"
|
|
|
|
|
|
|
|
in_dir="low-resl"
|
|
|
|
tgt_dir="high-resl"
|
|
|
|
|
2020-01-27 17:15:46 +01:00
|
|
|
train_dirs="set[0-7]/output/PART_004"
|
|
|
|
#val_dirs="set4/output/PART_004"
|
2020-01-23 01:47:27 +01:00
|
|
|
|
|
|
|
in_files_1="disp.npy"
|
|
|
|
in_files_2="vel.npy"
|
|
|
|
tgt_files_1="disp.npy"
|
|
|
|
tgt_files_2="vel.npy"
|
|
|
|
|
|
|
|
|
|
|
|
srun m2m.py train \
|
|
|
|
--train-in-patterns "$data_root_dir/$in_dir/$train_dirs/$in_files_1,$data_root_dir/$in_dir/$train_dirs/$in_files_2" \
|
|
|
|
--train-tgt-patterns "$data_root_dir/$tgt_dir/$train_dirs/$tgt_files_1,$data_root_dir/$tgt_dir/$train_dirs/$tgt_files_2" \
|
|
|
|
--in-norms cosmology.dis,cosmology.vel --tgt-norms cosmology.dis,cosmology.vel --augment --crop 88 --pad 20 --scale-factor 2 \
|
2020-07-15 03:07:05 +02:00
|
|
|
--model VNet \
|
|
|
|
--lr 0.0001 --batches 1 --loader-workers 0 \
|
2020-07-14 23:05:30 +02:00
|
|
|
--epochs 1024 --seed $RANDOM
|
2020-01-23 01:47:27 +01:00
|
|
|
|
|
|
|
|
|
|
|
date
|