libsharp2/libsharp/sharp.c
2019-02-27 11:12:44 +01:00

987 lines
29 KiB
C

/*
* This file is part of libsharp.
*
* libsharp is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libsharp is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libsharp; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* libsharp is being developed at the Max-Planck-Institut fuer Astrophysik */
/*! \file sharp.c
* Spherical transform library
*
* Copyright (C) 2006-2019 Max-Planck-Society
* \author Martin Reinecke \author Dag Sverre Seljebotn
*/
#include <math.h>
#include <string.h>
#include "pocketfft/pocketfft.h"
#include "libsharp/sharp_ylmgen_c.h"
#include "libsharp/sharp_internal.h"
#include "c_utils/c_utils.h"
#include "c_utils/walltime_c.h"
#include "libsharp/sharp_almhelpers.h"
#include "libsharp/sharp_geomhelpers.h"
typedef complex double dcmplx;
typedef complex float fcmplx;
static const double sqrt_one_half = 0.707106781186547572737310929369;
static const double sqrt_two = 1.414213562373095145474621858739;
static int chunksize_min=500, nchunks_max=10;
static void get_chunk_info (int ndata, int nmult, int *nchunks, int *chunksize)
{
*chunksize = (ndata+nchunks_max-1)/nchunks_max;
if (*chunksize>=chunksize_min) // use max number of chunks
*chunksize = ((*chunksize+nmult-1)/nmult)*nmult;
else // need to adjust chunksize and nchunks
{
*nchunks = (ndata+chunksize_min-1)/chunksize_min;
*chunksize = (ndata+(*nchunks)-1)/(*nchunks);
if (*nchunks>1)
*chunksize = ((*chunksize+nmult-1)/nmult)*nmult;
}
*nchunks = (ndata+(*chunksize)-1)/(*chunksize);
}
NOINLINE int sharp_get_mlim (int lmax, int spin, double sth, double cth)
{
double ofs=lmax*0.01;
if (ofs<100.) ofs=100.;
double b = -2*spin*fabs(cth);
double t1 = lmax*sth+ofs;
double c = (double)spin*spin-t1*t1;
double discr = b*b-4*c;
if (discr<=0) return lmax;
double res=(-b+sqrt(discr))/2.;
if (res>lmax) res=lmax;
return (int)(res+0.5);
}
typedef struct
{
double phi0_;
dcmplx *shiftarr;
int s_shift;
pocketfft_plan_r plan;
int length;
int norot;
} ringhelper;
static void ringhelper_init (ringhelper *self)
{
static ringhelper rh_null = { 0, NULL, 0, NULL, 0, 0 };
*self = rh_null;
}
static void ringhelper_destroy (ringhelper *self)
{
if (self->plan) pocketfft_delete_plan_r(self->plan);
DEALLOC(self->shiftarr);
ringhelper_init(self);
}
NOINLINE static void ringhelper_update (ringhelper *self, int nph, int mmax, double phi0)
{
self->norot = (fabs(phi0)<1e-14);
if (!(self->norot))
if ((mmax!=self->s_shift-1) || (!FAPPROX(phi0,self->phi0_,1e-12)))
{
RESIZE (self->shiftarr,dcmplx,mmax+1);
self->s_shift = mmax+1;
self->phi0_ = phi0;
// FIXME: improve this by using sincos2pibyn(nph) etc.
for (int m=0; m<=mmax; ++m)
self->shiftarr[m] = cos(m*phi0) + _Complex_I*sin(m*phi0);
// double *tmp=(double *) self->shiftarr;
// sincos_multi (mmax+1, phi0, &tmp[1], &tmp[0], 2);
}
// if (!self->plan) self->plan=pocketfft_make_plan_r(nph);
if (nph!=(int)self->length)
{
if (self->plan) pocketfft_delete_plan_r(self->plan);
self->plan=pocketfft_make_plan_r(nph);
self->length=nph;
}
}
static int ringinfo_compare (const void *xa, const void *xb)
{
const sharp_ringinfo *a=xa, *b=xb;
return (a->sth < b->sth) ? -1 : (a->sth > b->sth) ? 1 : 0;
}
static int ringpair_compare (const void *xa, const void *xb)
{
const sharp_ringpair *a=xa, *b=xb;
// return (a->r1.sth < b->r1.sth) ? -1 : (a->r1.sth > b->r1.sth) ? 1 : 0;
if (a->r1.nph==b->r1.nph)
return (a->r1.phi0 < b->r1.phi0) ? -1 :
((a->r1.phi0 > b->r1.phi0) ? 1 :
(a->r1.cth>b->r1.cth ? -1 : 1));
return (a->r1.nph<b->r1.nph) ? -1 : 1;
}
void sharp_make_general_alm_info (int lmax, int nm, int stride, const int *mval,
const ptrdiff_t *mstart, int flags, sharp_alm_info **alm_info)
{
sharp_alm_info *info = RALLOC(sharp_alm_info,1);
info->lmax = lmax;
info->nm = nm;
info->mval = RALLOC(int,nm);
info->mvstart = RALLOC(ptrdiff_t,nm);
info->stride = stride;
info->flags = flags;
for (int mi=0; mi<nm; ++mi)
{
info->mval[mi] = mval[mi];
info->mvstart[mi] = mstart[mi];
}
*alm_info = info;
}
void sharp_make_alm_info (int lmax, int mmax, int stride,
const ptrdiff_t *mstart, sharp_alm_info **alm_info)
{
int *mval=RALLOC(int,mmax+1);
for (int i=0; i<=mmax; ++i)
mval[i]=i;
sharp_make_general_alm_info (lmax, mmax+1, stride, mval, mstart, 0, alm_info);
DEALLOC(mval);
}
ptrdiff_t sharp_alm_index (const sharp_alm_info *self, int l, int mi)
{
UTIL_ASSERT(!(self->flags & SHARP_PACKED),
"sharp_alm_index not applicable with SHARP_PACKED alms");
return self->mvstart[mi]+self->stride*l;
}
ptrdiff_t sharp_alm_count(const sharp_alm_info *self)
{
ptrdiff_t result=0;
for (int im=0; im!=self->nm; ++im)
{
int m=self->mval[im];
ptrdiff_t x=(self->lmax + 1 - m);
if ((m!=0)&&((self->flags&SHARP_PACKED)!=0)) result+=2*x;
else result+=x;
}
return result;
}
void sharp_destroy_alm_info (sharp_alm_info *info)
{
DEALLOC (info->mval);
DEALLOC (info->mvstart);
DEALLOC (info);
}
void sharp_make_geom_info (int nrings, const int *nph, const ptrdiff_t *ofs,
const int *stride, const double *phi0, const double *theta,
const double *wgt, sharp_geom_info **geom_info)
{
sharp_geom_info *info = RALLOC(sharp_geom_info,1);
sharp_ringinfo *infos = RALLOC(sharp_ringinfo,nrings);
int pos=0;
info->pair=RALLOC(sharp_ringpair,nrings);
info->npairs=0;
info->nphmax=0;
*geom_info = info;
for (int m=0; m<nrings; ++m)
{
infos[m].theta = theta[m];
infos[m].cth = cos(theta[m]);
infos[m].sth = sin(theta[m]);
infos[m].weight = (wgt != NULL) ? wgt[m] : 1.;
infos[m].phi0 = phi0[m];
infos[m].ofs = ofs[m];
infos[m].stride = stride[m];
infos[m].nph = nph[m];
if (info->nphmax<nph[m]) info->nphmax=nph[m];
}
qsort(infos,nrings,sizeof(sharp_ringinfo),ringinfo_compare);
while (pos<nrings)
{
info->pair[info->npairs].r1=infos[pos];
if ((pos<nrings-1) && FAPPROX(infos[pos].cth,-infos[pos+1].cth,1e-12))
{
if (infos[pos].cth>0) // make sure northern ring is in r1
info->pair[info->npairs].r2=infos[pos+1];
else
{
info->pair[info->npairs].r1=infos[pos+1];
info->pair[info->npairs].r2=infos[pos];
}
++pos;
}
else
info->pair[info->npairs].r2.nph=-1;
++pos;
++info->npairs;
}
DEALLOC(infos);
qsort(info->pair,info->npairs,sizeof(sharp_ringpair),ringpair_compare);
}
ptrdiff_t sharp_map_size(const sharp_geom_info *info)
{
ptrdiff_t result = 0;
for (int m=0; m<info->npairs; ++m)
{
result+=info->pair[m].r1.nph;
result+=(info->pair[m].r2.nph>=0) ? (info->pair[m].r2.nph) : 0;
}
return result;
}
void sharp_destroy_geom_info (sharp_geom_info *geom_info)
{
DEALLOC (geom_info->pair);
DEALLOC (geom_info);
}
/* This currently requires all m values from 0 to nm-1 to be present.
It might be worthwhile to relax this criterion such that holes in the m
distribution are permissible. */
static int sharp_get_mmax (int *mval, int nm)
{
//FIXME: if gaps are allowed, we have to search the maximum m in the array
int *mcheck=RALLOC(int,nm);
SET_ARRAY(mcheck,0,nm,0);
for (int i=0; i<nm; ++i)
{
int m_cur=mval[i];
UTIL_ASSERT((m_cur>=0) && (m_cur<nm), "not all m values are present");
UTIL_ASSERT(mcheck[m_cur]==0, "duplicate m value");
mcheck[m_cur]=1;
}
DEALLOC(mcheck);
return nm-1;
}
NOINLINE static void ringhelper_phase2ring (ringhelper *self,
const sharp_ringinfo *info, double *data, int mmax, const dcmplx *phase,
int pstride, int flags)
{
int nph = info->nph;
ringhelper_update (self, nph, mmax, info->phi0);
double wgt = (flags&SHARP_USE_WEIGHTS) ? info->weight : 1.;
if (flags&SHARP_REAL_HARMONICS)
wgt *= sqrt_one_half;
if (nph>=2*mmax+1)
{
if (self->norot)
for (int m=0; m<=mmax; ++m)
{
data[2*m]=creal(phase[m*pstride])*wgt;
data[2*m+1]=cimag(phase[m*pstride])*wgt;
}
else
for (int m=0; m<=mmax; ++m)
{
dcmplx tmp = phase[m*pstride]*self->shiftarr[m];
data[2*m]=creal(tmp)*wgt;
data[2*m+1]=cimag(tmp)*wgt;
}
for (int m=2*(mmax+1); m<nph+2; ++m)
data[m]=0.;
}
else
{
data[0]=creal(phase[0])*wgt;
SET_ARRAY(data,1,nph+2,0.);
int idx1=1, idx2=nph-1;
for (int m=1; m<=mmax; ++m)
{
dcmplx tmp = phase[m*pstride]*wgt;
if(!self->norot) tmp*=self->shiftarr[m];
if (idx1<(nph+2)/2)
{
data[2*idx1]+=creal(tmp);
data[2*idx1+1]+=cimag(tmp);
}
if (idx2<(nph+2)/2)
{
data[2*idx2]+=creal(tmp);
data[2*idx2+1]-=cimag(tmp);
}
if (++idx1>=nph) idx1=0;
if (--idx2<0) idx2=nph-1;
}
}
data[1]=data[0];
pocketfft_backward_r (self->plan, &(data[1]), 1.);
}
NOINLINE static void ringhelper_ring2phase (ringhelper *self,
const sharp_ringinfo *info, double *data, int mmax, dcmplx *phase,
int pstride, int flags)
{
int nph = info->nph;
#if 1
int maxidx = mmax; /* Enable this for traditional Healpix compatibility */
#else
int maxidx = IMIN(nph-1,mmax);
#endif
ringhelper_update (self, nph, mmax, -info->phi0);
double wgt = (flags&SHARP_USE_WEIGHTS) ? info->weight : 1;
if (flags&SHARP_REAL_HARMONICS)
wgt *= sqrt_two;
pocketfft_forward_r (self->plan, &(data[1]), 1.);
data[0]=data[1];
data[1]=data[nph+1]=0.;
if (maxidx<=nph/2)
{
if (self->norot)
for (int m=0; m<=maxidx; ++m)
phase[m*pstride] = (data[2*m] + _Complex_I*data[2*m+1]) * wgt;
else
for (int m=0; m<=maxidx; ++m)
phase[m*pstride] =
(data[2*m] + _Complex_I*data[2*m+1]) * self->shiftarr[m] * wgt;
}
else
{
for (int m=0; m<=maxidx; ++m)
{
int idx=m%nph;
dcmplx val;
if (idx<(nph-idx))
val = (data[2*idx] + _Complex_I*data[2*idx+1]) * wgt;
else
val = (data[2*(nph-idx)] - _Complex_I*data[2*(nph-idx)+1]) * wgt;
if (!self->norot)
val *= self->shiftarr[m];
phase[m*pstride]=val;
}
}
for (int m=maxidx+1;m<=mmax; ++m)
phase[m*pstride]=0.;
}
NOINLINE static void clear_map (const sharp_geom_info *ginfo, void *map,
int flags)
{
if (flags & SHARP_NO_FFT)
{
for (int j=0;j<ginfo->npairs;++j)
{
if (flags&SHARP_DP)
{
for (ptrdiff_t i=0;i<ginfo->pair[j].r1.nph;++i)
((dcmplx *)map)[ginfo->pair[j].r1.ofs+i*ginfo->pair[j].r1.stride]=0;
for (ptrdiff_t i=0;i<ginfo->pair[j].r2.nph;++i)
((dcmplx *)map)[ginfo->pair[j].r2.ofs+i*ginfo->pair[j].r2.stride]=0;
}
else
{
for (ptrdiff_t i=0;i<ginfo->pair[j].r1.nph;++i)
((fcmplx *)map)[ginfo->pair[j].r1.ofs+i*ginfo->pair[j].r1.stride]=0;
for (ptrdiff_t i=0;i<ginfo->pair[j].r2.nph;++i)
((fcmplx *)map)[ginfo->pair[j].r2.ofs+i*ginfo->pair[j].r2.stride]=0;
}
}
}
else
{
if (flags&SHARP_DP)
{
for (int j=0;j<ginfo->npairs;++j)
{
double *dmap=(double *)map;
if (ginfo->pair[j].r1.stride==1)
memset(&dmap[ginfo->pair[j].r1.ofs],0,
ginfo->pair[j].r1.nph*sizeof(double));
else
for (ptrdiff_t i=0;i<ginfo->pair[j].r1.nph;++i)
dmap[ginfo->pair[j].r1.ofs+i*ginfo->pair[j].r1.stride]=0;
if ((ginfo->pair[j].r2.nph>0)&&(ginfo->pair[j].r2.stride==1))
memset(&dmap[ginfo->pair[j].r2.ofs],0,
ginfo->pair[j].r2.nph*sizeof(double));
else
for (ptrdiff_t i=0;i<ginfo->pair[j].r2.nph;++i)
dmap[ginfo->pair[j].r2.ofs+i*ginfo->pair[j].r2.stride]=0;
}
}
else
{
for (int j=0;j<ginfo->npairs;++j)
{
for (ptrdiff_t i=0;i<ginfo->pair[j].r1.nph;++i)
((float *)map)[ginfo->pair[j].r1.ofs+i*ginfo->pair[j].r1.stride]=0;
for (ptrdiff_t i=0;i<ginfo->pair[j].r2.nph;++i)
((float *)map)[ginfo->pair[j].r2.ofs+i*ginfo->pair[j].r2.stride]=0;
}
}
}
}
NOINLINE static void clear_alm (const sharp_alm_info *ainfo, void *alm,
int flags)
{
#define CLEARLOOP(real_t,body) \
{ \
real_t *talm = (real_t *)alm; \
for (int l=m;l<=ainfo->lmax;++l) \
body \
}
for (int mi=0;mi<ainfo->nm;++mi)
{
int m=ainfo->mval[mi];
ptrdiff_t mvstart = ainfo->mvstart[mi];
ptrdiff_t stride = ainfo->stride;
if (!(ainfo->flags&SHARP_PACKED))
mvstart*=2;
if ((ainfo->flags&SHARP_PACKED)&&(m==0))
{
if (flags&SHARP_DP)
CLEARLOOP(double, talm[mvstart+l*stride] = 0.;)
else
CLEARLOOP(float, talm[mvstart+l*stride] = 0.;)
}
else
{
stride*=2;
if (flags&SHARP_DP)
CLEARLOOP(double,talm[mvstart+l*stride]=talm[mvstart+l*stride+1]=0.;)
else
CLEARLOOP(float,talm[mvstart+l*stride]=talm[mvstart+l*stride+1]=0.;)
}
#undef CLEARLOOP
}
}
NOINLINE static void init_output (sharp_job *job)
{
if (job->flags&SHARP_ADD) return;
if (job->type == SHARP_MAP2ALM)
for (int i=0; i<job->nalm; ++i)
clear_alm (job->ainfo,job->alm[i],job->flags);
else
for (int i=0; i<job->nmaps; ++i)
clear_map (job->ginfo,job->map[i],job->flags);
}
NOINLINE static void alloc_phase (sharp_job *job, int nm, int ntheta)
{
if (job->type==SHARP_MAP2ALM)
{
job->s_m=2*job->nmaps;
if (((job->s_m*16*nm)&1023)==0) nm+=3; // hack to avoid critical strides
job->s_th=job->s_m*nm;
}
else
{
job->s_th=2*job->nmaps;
if (((job->s_th*16*ntheta)&1023)==0) ntheta+=3; // hack to avoid critical strides
job->s_m=job->s_th*ntheta;
}
job->phase=RALLOC(dcmplx,2*job->nmaps*nm*ntheta);
}
static void dealloc_phase (sharp_job *job)
{ DEALLOC(job->phase); }
static void alloc_almtmp (sharp_job *job, int lmax)
{ job->almtmp=RALLOC(dcmplx,job->nalm*(lmax+2)); }
static void dealloc_almtmp (sharp_job *job)
{ DEALLOC(job->almtmp); }
NOINLINE static void alm2almtmp (sharp_job *job, int lmax, int mi)
{
#define COPY_LOOP(real_t, source_t, expr_of_x) \
{ \
for (int l=m; l<lmin; ++l) \
for (int i=0; i<job->nalm; ++i) \
job->almtmp[job->nalm*l+i] = 0; \
for (int l=lmin; l<=lmax; ++l) \
for (int i=0; i<job->nalm; ++i) \
{ \
source_t x = *(source_t *)(((real_t *)job->alm[i])+ofs+l*stride); \
job->almtmp[job->nalm*l+i] = expr_of_x; \
} \
for (int i=0; i<job->nalm; ++i) \
job->almtmp[job->nalm*(lmax+1)+i] = 0; \
}
if (job->type!=SHARP_MAP2ALM)
{
ptrdiff_t ofs=job->ainfo->mvstart[mi];
int stride=job->ainfo->stride;
int m=job->ainfo->mval[mi];
int lmin=(m<job->spin) ? job->spin : m;
/* in the case of SHARP_REAL_HARMONICS, phase2ring scales all the
coefficients by sqrt_one_half; here we must compensate to avoid scaling
m=0 */
double norm_m0=(job->flags&SHARP_REAL_HARMONICS) ? sqrt_two : 1.;
if (!(job->ainfo->flags&SHARP_PACKED))
ofs *= 2;
if (!((job->ainfo->flags&SHARP_PACKED)&&(m==0)))
stride *= 2;
if (job->spin==0)
{
if (m==0)
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, double, x*norm_m0)
else
COPY_LOOP(float, float, x*norm_m0)
}
else
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, dcmplx, x)
else
COPY_LOOP(float, fcmplx, x)
}
}
else
{
if (m==0)
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, double, x*job->norm_l[l]*norm_m0)
else
COPY_LOOP(float, float, x*job->norm_l[l]*norm_m0)
}
else
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, dcmplx, x*job->norm_l[l])
else
COPY_LOOP(float, fcmplx, x*job->norm_l[l])
}
}
}
else
memset (job->almtmp+job->nalm*job->ainfo->mval[mi], 0,
job->nalm*(lmax+2-job->ainfo->mval[mi])*sizeof(dcmplx));
#undef COPY_LOOP
}
NOINLINE static void almtmp2alm (sharp_job *job, int lmax, int mi)
{
#define COPY_LOOP(real_t, target_t, expr_of_x) \
for (int l=lmin; l<=lmax; ++l) \
for (int i=0; i<job->nalm; ++i) \
{ \
dcmplx x = job->almtmp[job->nalm*l+i]; \
*(target_t *)(((real_t *)job->alm[i])+ofs+l*stride) += expr_of_x; \
}
if (job->type != SHARP_MAP2ALM) return;
ptrdiff_t ofs=job->ainfo->mvstart[mi];
int stride=job->ainfo->stride;
int m=job->ainfo->mval[mi];
int lmin=(m<job->spin) ? job->spin : m;
/* in the case of SHARP_REAL_HARMONICS, ring2phase scales all the
coefficients by sqrt_two; here we must compensate to avoid scaling
m=0 */
double norm_m0=(job->flags&SHARP_REAL_HARMONICS) ? sqrt_one_half : 1.;
if (!(job->ainfo->flags&SHARP_PACKED))
ofs *= 2;
if (!((job->ainfo->flags&SHARP_PACKED)&&(m==0)))
stride *= 2;
if (job->spin==0)
{
if (m==0)
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, double, creal(x)*norm_m0)
else
COPY_LOOP(float, float, crealf(x)*norm_m0)
}
else
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, dcmplx, x)
else
COPY_LOOP(float, fcmplx, (fcmplx)x)
}
}
else
{
if (m==0)
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, double, creal(x)*job->norm_l[l]*norm_m0)
else
COPY_LOOP(float, fcmplx, (float)(creal(x)*job->norm_l[l]*norm_m0))
}
else
{
if (job->flags&SHARP_DP)
COPY_LOOP(double, dcmplx, x*job->norm_l[l])
else
COPY_LOOP(float, fcmplx, (fcmplx)(x*job->norm_l[l]))
}
}
#undef COPY_LOOP
}
NOINLINE static void ringtmp2ring (sharp_job *job, sharp_ringinfo *ri,
const double *ringtmp, int rstride)
{
if (job->flags & SHARP_DP)
{
double **dmap = (double **)job->map;
for (int i=0; i<job->nmaps; ++i)
{
double *restrict p1=&dmap[i][ri->ofs];
const double *restrict p2=&ringtmp[i*rstride+1];
if (ri->stride==1)
{
if (job->flags&SHARP_ADD)
for (int m=0; m<ri->nph; ++m)
p1[m] += p2[m];
else
memcpy(p1,p2,ri->nph*sizeof(double));
}
else
for (int m=0; m<ri->nph; ++m)
p1[m*ri->stride] += p2[m];
}
}
else
{
float **fmap = (float **)job->map;
for (int i=0; i<job->nmaps; ++i)
for (int m=0; m<ri->nph; ++m)
fmap[i][ri->ofs+m*ri->stride] += (float)ringtmp[i*rstride+m+1];
}
}
NOINLINE static void ring2ringtmp (sharp_job *job, sharp_ringinfo *ri,
double *ringtmp, int rstride)
{
if (job->flags & SHARP_DP)
for (int i=0; i<job->nmaps; ++i)
{
double *restrict p1=&ringtmp[i*rstride+1],
*restrict p2=&(((double *)(job->map[i]))[ri->ofs]);
if (ri->stride==1)
memcpy(p1,p2,ri->nph*sizeof(double));
else
for (int m=0; m<ri->nph; ++m)
p1[m] = p2[m*ri->stride];
}
else
for (int i=0; i<job->nmaps; ++i)
for (int m=0; m<ri->nph; ++m)
ringtmp[i*rstride+m+1] = ((float *)(job->map[i]))[ri->ofs+m*ri->stride];
}
static void ring2phase_direct (sharp_job *job, sharp_ringinfo *ri, int mmax,
dcmplx *phase)
{
if (ri->nph<0)
{
for (int i=0; i<job->nmaps; ++i)
for (int m=0; m<=mmax; ++m)
phase[2*i+job->s_m*m]=0.;
}
else
{
UTIL_ASSERT(ri->nph==mmax+1,"bad ring size");
double wgt = (job->flags&SHARP_USE_WEIGHTS) ? (ri->nph*ri->weight) : 1.;
if (job->flags&SHARP_REAL_HARMONICS)
wgt *= sqrt_two;
for (int i=0; i<job->nmaps; ++i)
for (int m=0; m<=mmax; ++m)
phase[2*i+job->s_m*m]= (job->flags & SHARP_DP) ?
((dcmplx *)(job->map[i]))[ri->ofs+m*ri->stride]*wgt :
((fcmplx *)(job->map[i]))[ri->ofs+m*ri->stride]*wgt;
}
}
static void phase2ring_direct (sharp_job *job, sharp_ringinfo *ri, int mmax,
dcmplx *phase)
{
if (ri->nph<0) return;
UTIL_ASSERT(ri->nph==mmax+1,"bad ring size");
dcmplx **dmap = (dcmplx **)job->map;
fcmplx **fmap = (fcmplx **)job->map;
double wgt = (job->flags&SHARP_USE_WEIGHTS) ? (ri->nph*ri->weight) : 1.;
if (job->flags&SHARP_REAL_HARMONICS)
wgt *= sqrt_one_half;
for (int i=0; i<job->nmaps; ++i)
for (int m=0; m<=mmax; ++m)
if (job->flags & SHARP_DP)
dmap[i][ri->ofs+m*ri->stride] += wgt*phase[2*i+job->s_m*m];
else
fmap[i][ri->ofs+m*ri->stride] += (fcmplx)(wgt*phase[2*i+job->s_m*m]);
}
//FIXME: set phase to zero if not SHARP_MAP2ALM?
NOINLINE static void map2phase (sharp_job *job, int mmax, int llim, int ulim)
{
if (job->type != SHARP_MAP2ALM) return;
int pstride = job->s_m;
if (job->flags & SHARP_NO_FFT)
{
for (int ith=llim; ith<ulim; ++ith)
{
int dim2 = job->s_th*(ith-llim);
ring2phase_direct(job,&(job->ginfo->pair[ith].r1),mmax,
&(job->phase[dim2]));
ring2phase_direct(job,&(job->ginfo->pair[ith].r2),mmax,
&(job->phase[dim2+1]));
}
}
else
{
#pragma omp parallel
{
ringhelper helper;
ringhelper_init(&helper);
int rstride=job->ginfo->nphmax+2;
double *ringtmp=RALLOC(double,job->nmaps*rstride);
#pragma omp for schedule(dynamic,1)
for (int ith=llim; ith<ulim; ++ith)
{
int dim2 = job->s_th*(ith-llim);
ring2ringtmp(job,&(job->ginfo->pair[ith].r1),ringtmp,rstride);
for (int i=0; i<job->nmaps; ++i)
ringhelper_ring2phase (&helper,&(job->ginfo->pair[ith].r1),
&ringtmp[i*rstride],mmax,&job->phase[dim2+2*i],pstride,job->flags);
if (job->ginfo->pair[ith].r2.nph>0)
{
ring2ringtmp(job,&(job->ginfo->pair[ith].r2),ringtmp,rstride);
for (int i=0; i<job->nmaps; ++i)
ringhelper_ring2phase (&helper,&(job->ginfo->pair[ith].r2),
&ringtmp[i*rstride],mmax,&job->phase[dim2+2*i+1],pstride,job->flags);
}
}
DEALLOC(ringtmp);
ringhelper_destroy(&helper);
} /* end of parallel region */
}
}
NOINLINE static void phase2map (sharp_job *job, int mmax, int llim, int ulim)
{
if (job->type == SHARP_MAP2ALM) return;
int pstride = job->s_m;
if (job->flags & SHARP_NO_FFT)
{
for (int ith=llim; ith<ulim; ++ith)
{
int dim2 = job->s_th*(ith-llim);
phase2ring_direct(job,&(job->ginfo->pair[ith].r1),mmax,
&(job->phase[dim2]));
phase2ring_direct(job,&(job->ginfo->pair[ith].r2),mmax,
&(job->phase[dim2+1]));
}
}
else
{
#pragma omp parallel
{
ringhelper helper;
ringhelper_init(&helper);
int rstride=job->ginfo->nphmax+2;
double *ringtmp=RALLOC(double,job->nmaps*rstride);
#pragma omp for schedule(dynamic,1)
for (int ith=llim; ith<ulim; ++ith)
{
int dim2 = job->s_th*(ith-llim);
for (int i=0; i<job->nmaps; ++i)
ringhelper_phase2ring (&helper,&(job->ginfo->pair[ith].r1),
&ringtmp[i*rstride],mmax,&job->phase[dim2+2*i],pstride,job->flags);
ringtmp2ring(job,&(job->ginfo->pair[ith].r1),ringtmp,rstride);
if (job->ginfo->pair[ith].r2.nph>0)
{
for (int i=0; i<job->nmaps; ++i)
ringhelper_phase2ring (&helper,&(job->ginfo->pair[ith].r2),
&ringtmp[i*rstride],mmax,&job->phase[dim2+2*i+1],pstride,job->flags);
ringtmp2ring(job,&(job->ginfo->pair[ith].r2),ringtmp,rstride);
}
}
DEALLOC(ringtmp);
ringhelper_destroy(&helper);
} /* end of parallel region */
}
}
NOINLINE static void sharp_execute_job (sharp_job *job)
{
double timer=wallTime();
job->opcnt=0;
int lmax = job->ainfo->lmax,
mmax=sharp_get_mmax(job->ainfo->mval, job->ainfo->nm);
job->norm_l = (job->type==SHARP_ALM2MAP_DERIV1) ?
sharp_Ylmgen_get_d1norm (lmax) :
sharp_Ylmgen_get_norm (lmax, job->spin);
/* clear output arrays if requested */
init_output (job);
int nchunks, chunksize;
get_chunk_info(job->ginfo->npairs,sharp_veclen()*sharp_max_nvec(job->spin),
&nchunks,&chunksize);
//FIXME: needs to be changed to "nm"
alloc_phase (job,mmax+1,chunksize);
/* chunk loop */
for (int chunk=0; chunk<nchunks; ++chunk)
{
int llim=chunk*chunksize, ulim=IMIN(llim+chunksize,job->ginfo->npairs);
int *ispair = RALLOC(int,ulim-llim);
int *mlim = RALLOC(int,ulim-llim);
double *cth = RALLOC(double,ulim-llim), *sth = RALLOC(double,ulim-llim);
for (int i=0; i<ulim-llim; ++i)
{
ispair[i] = job->ginfo->pair[i+llim].r2.nph>0;
cth[i] = job->ginfo->pair[i+llim].r1.cth;
sth[i] = job->ginfo->pair[i+llim].r1.sth;
mlim[i] = sharp_get_mlim(lmax, job->spin, sth[i], cth[i]);
}
/* map->phase where necessary */
map2phase (job, mmax, llim, ulim);
#pragma omp parallel
{
sharp_job ljob = *job;
ljob.opcnt=0;
sharp_Ylmgen_C generator;
sharp_Ylmgen_init (&generator,lmax,mmax,ljob.spin);
alloc_almtmp(&ljob,lmax);
#pragma omp for schedule(dynamic,1)
for (int mi=0; mi<job->ainfo->nm; ++mi)
{
/* alm->alm_tmp where necessary */
alm2almtmp (&ljob, lmax, mi);
inner_loop (&ljob, ispair, cth, sth, llim, ulim, &generator, mi, mlim);
/* alm_tmp->alm where necessary */
almtmp2alm (&ljob, lmax, mi);
}
sharp_Ylmgen_destroy(&generator);
dealloc_almtmp(&ljob);
#pragma omp critical
job->opcnt+=ljob.opcnt;
} /* end of parallel region */
/* phase->map where necessary */
phase2map (job, mmax, llim, ulim);
DEALLOC(ispair);
DEALLOC(mlim);
DEALLOC(cth);
DEALLOC(sth);
} /* end of chunk loop */
DEALLOC(job->norm_l);
dealloc_phase (job);
job->time=wallTime()-timer;
}
static void sharp_build_job_common (sharp_job *job, sharp_jobtype type,
int spin, void *alm, void *map, const sharp_geom_info *geom_info,
const sharp_alm_info *alm_info, int flags)
{
if (type==SHARP_ALM2MAP_DERIV1) spin=1;
if (type==SHARP_MAP2ALM) flags|=SHARP_USE_WEIGHTS;
if (type==SHARP_Yt) type=SHARP_MAP2ALM;
if (type==SHARP_WY) { type=SHARP_ALM2MAP; flags|=SHARP_USE_WEIGHTS; }
UTIL_ASSERT((spin>=0)&&(spin<=alm_info->lmax), "bad spin");
job->type = type;
job->spin = spin;
job->norm_l = NULL;
job->nmaps = (type==SHARP_ALM2MAP_DERIV1) ? 2 : ((spin>0) ? 2 : 1);
job->nalm = (type==SHARP_ALM2MAP_DERIV1) ? 1 : ((spin>0) ? 2 : 1);
job->ginfo = geom_info;
job->ainfo = alm_info;
job->flags = flags;
if (alm_info->flags&SHARP_REAL_HARMONICS)
job->flags|=SHARP_REAL_HARMONICS;
job->time = 0.;
job->opcnt = 0;
job->alm=alm;
job->map=map;
}
void sharp_execute (sharp_jobtype type, int spin, void *alm, void *map,
const sharp_geom_info *geom_info, const sharp_alm_info *alm_info,
int flags, double *time, unsigned long long *opcnt)
{
sharp_job job;
sharp_build_job_common (&job, type, spin, alm, map, geom_info, alm_info,
flags);
sharp_execute_job (&job);
if (time!=NULL) *time = job.time;
if (opcnt!=NULL) *opcnt = job.opcnt;
}
void sharp_set_chunksize_min(int new_chunksize_min)
{ chunksize_min=new_chunksize_min; }
void sharp_set_nchunks_max(int new_nchunks_max)
{ nchunks_max=new_nchunks_max; }
#ifdef USE_MPI
#include "sharp_mpi.c"
int sharp_execute_mpi_maybe (void *pcomm, sharp_jobtype type, int spin,
void *alm, void *map, const sharp_geom_info *geom_info,
const sharp_alm_info *alm_info, int flags, double *time,
unsigned long long *opcnt)
{
MPI_Comm comm = *(MPI_Comm*)pcomm;
sharp_execute_mpi((MPI_Comm)comm, type, spin, alm, map, geom_info, alm_info,
flags, time, opcnt);
return 0;
}
#else
int sharp_execute_mpi_maybe (void *pcomm, sharp_jobtype type, int spin,
void *alm, void *map, const sharp_geom_info *geom_info,
const sharp_alm_info *alm_info, int flags, double *time,
unsigned long long *opcnt)
{
/* Suppress unused warning: */
(void)pcomm; (void)type; (void)spin; (void)alm; (void)map; (void)geom_info;
(void)alm_info; (void)flags; (void)time; (void)opcnt;
return SHARP_ERROR_NO_MPI;
}
#endif