libsharp2/libsharp/sharp_core.c
Martin Reinecke b5c6cff430 fixes
2018-12-13 10:57:04 +01:00

500 lines
14 KiB
C

/*
* This file is part of libsharp.
*
* libsharp is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libsharp is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libsharp; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* libsharp is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/*! \file sharp_core.c
* Computational core
*
* Copyright (C) 2012-2018 Max-Planck-Society
* \author Martin Reinecke
*/
#include <complex.h>
#include <math.h>
#include <string.h>
#include "sharp_vecsupport.h"
#include "sharp_complex_hacks.h"
#include "sharp.h"
#include "sharp_core.h"
#include "c_utils.h"
typedef complex double dcmplx;
#define nvec (256/VLEN)
typedef union
{ Tv v; double s[VLEN]; } Tvu;
typedef struct
{ Tv v[nvec]; } Tb;
typedef union
{ Tb b; double s[VLEN*nvec]; } Tbu;
typedef struct
{ Tb r, i; } Tbri;
typedef struct
{ double r[VLEN*nvec], i[VLEN*nvec]; } Tsri;
typedef union
{ Tbri b; Tsri s; } Tburi;
static void Tvnormalize (Tv * restrict val, Tv * restrict scale,
double maxval)
{
const Tv vfmin=vload(sharp_fsmall*maxval), vfmax=vload(maxval);
const Tv vfsmall=vload(sharp_fsmall), vfbig=vload(sharp_fbig);
Tm mask = vgt(vabs(*val),vfmax);
while (vanyTrue(mask))
{
vmuleq_mask(mask,*val,vfsmall);
vaddeq_mask(mask,*scale,vone);
mask = vgt(vabs(*val),vfmax);
}
mask = vand_mask(vlt(vabs(*val),vfmin),vne(*val,vzero));
while (vanyTrue(mask))
{
vmuleq_mask(mask,*val,vfbig);
vsubeq_mask(mask,*scale,vone);
mask = vand_mask(vlt(vabs(*val),vfmin),vne(*val,vzero));
}
}
static void mypow(Tv val, int npow, const double * restrict powlimit,
Tv * restrict resd, Tv * restrict ress)
{
Tv vminv=vload(powlimit[npow]);
Tv res=vone;
Tm mask = vlt(vabs(val),vminv);
if (!vanyTrue(mask)) // no underflows possible, use quick algoritm
{
Tv res=vone;
do
{
if (npow&1)
vmuleq(res,val);
vmuleq(val,val);
}
while(npow>>=1);
*resd=res;
*ress=vzero;
}
else
{
Tv scale=vzero, scaleint=vzero, res=vone;
Tvnormalize(&val,&scaleint,sharp_fbighalf);
do
{
if (npow&1)
{
vmuleq(res,val);
vaddeq(scale,scaleint);
Tvnormalize(&res,&scale,sharp_fbighalf);
}
vmuleq(val,val);
vaddeq(scaleint,scaleint);
Tvnormalize(&val,&scaleint,sharp_fbighalf);
}
while(npow>>=1);
*resd=res;
*ress=scale;
}
}
static void getCorfac(Tv scale, Tv * restrict corfac,
const double * restrict cf)
{
Tvu sc, corf;
sc.v=scale;
for (int i=0; i<VLEN; ++i)
corf.s[i] = (sc.s[i]<sharp_minscale) ?
0. : cf[(int)(sc.s[i])-sharp_minscale];
*corfac=corf.v;
}
NOINLINE static void iter_to_ieee (const Tb sth, Tb cth, int *l_,
Tb * restrict lam_1, Tb * restrict lam_2, Tb * restrict scale,
const sharp_Ylmgen_C * restrict gen, int nv2)
{
int l=gen->m;
Tv mfac = vload((gen->m&1) ? -gen->mfac[gen->m]:gen->mfac[gen->m]);
Tv fsmall=vload(sharp_fsmall), limscale=vload(sharp_limscale);
int below_limit = 1;
for (int i=0; i<nv2; ++i)
{
lam_1->v[i]=vzero;
mypow(sth.v[i],l,gen->powlimit,&lam_2->v[i],&scale->v[i]);
lam_2->v[i] *= mfac;
Tvnormalize(&lam_2->v[i],&scale->v[i],sharp_ftol);
below_limit &= vallTrue(vlt(scale->v[i],limscale));
}
while (below_limit)
{
if (l+2>gen->lmax) {*l_=gen->lmax+1;return;}
below_limit=1;
Tv r10=vload(gen->rf[l ].f[0]), r11=vload(gen->rf[l ].f[1]),
r20=vload(gen->rf[l+1].f[0]), r21=vload(gen->rf[l+1].f[1]);
for (int i=0; i<nv2; ++i)
{
lam_1->v[i] = r10*cth.v[i]*lam_2->v[i] - r11*lam_1->v[i];
lam_2->v[i] = r20*cth.v[i]*lam_1->v[i] - r21*lam_2->v[i];
Tm mask = vgt(vabs(lam_2->v[i]),vload(sharp_ftol));
if (vanyTrue(mask))
{
vmuleq_mask(mask,lam_1->v[i],fsmall);
vmuleq_mask(mask,lam_2->v[i],fsmall);
vaddeq_mask(mask,scale->v[i],vone);
below_limit &= vallTrue(vlt(scale->v[i],limscale));
}
}
l+=2;
}
*l_=l;
}
NOINLINE static void alm2map_kernel(const Tb cth, Tbri * restrict p1,
Tbri * restrict p2, Tb lam_1, Tb lam_2,
const sharp_ylmgen_dbl2 * restrict rf, const dcmplx * restrict alm,
int l, int lmax, int nv2)
{
while (l<=lmax)
{
Tv ar1=vload(creal(alm[l ])), ai1=vload(cimag(alm[l ]));
Tv ar2=vload(creal(alm[l+1])), ai2=vload(cimag(alm[l+1]));
Tv f10=vload(rf[l ].f[0]), f11=vload(rf[l ].f[1]),
f20=vload(rf[l+1].f[0]), f21=vload(rf[l+1].f[1]);
for (int i=0; i<nv2; ++i)
{
lam_1.v[i] = f10*cth.v[i]*lam_2.v[i] - f11*lam_1.v[i];
vfmaeq(p1->r.v[i],lam_2.v[i],ar1);
vfmaeq(p1->i.v[i],lam_2.v[i],ai1);
lam_2.v[i] = f20*cth.v[i]*lam_1.v[i] - f21*lam_2.v[i];
vfmaeq(p2->r.v[i],lam_1.v[i],ar2);
vfmaeq(p2->i.v[i],lam_1.v[i],ai2);
}
l+=2;
}
}
NOINLINE static void map2alm_kernel (const Tb cth,
const Tbri * restrict p1, const Tbri * restrict p2, Tb lam_1, Tb lam_2,
const sharp_ylmgen_dbl2 * restrict rf, dcmplx * restrict alm, int l,
int lmax, int nv2)
{
while (l<=lmax)
{
Tv f10=vload(rf[l ].f[0]), f11=vload(rf[l ].f[1]),
f20=vload(rf[l+1].f[0]), f21=vload(rf[l+1].f[1]);
Tv atmp[4] = {vzero, vzero, vzero, vzero};
for (int i=0; i<nv2; ++i)
{
lam_1.v[i] = f10*cth.v[i]*lam_2.v[i] - f11*lam_1.v[i];
vfmaeq(atmp[0],lam_2.v[i],p1->r.v[i]);
vfmaeq(atmp[1],lam_2.v[i],p1->i.v[i]);
lam_2.v[i] = f20*cth.v[i]*lam_1.v[i] - f21*lam_2.v[i];
vfmaeq(atmp[2],lam_1.v[i],p2->r.v[i]);
vfmaeq(atmp[3],lam_1.v[i],p2->i.v[i]);
}
vhsum_cmplx_special (atmp[0], atmp[1], atmp[2], atmp[3], &alm[l]);
l+=2;
}
}
NOINLINE static void calc_alm2map (const Tb cth, const Tb sth,
const sharp_Ylmgen_C *gen, sharp_job *job, Tbri * restrict p1,
Tbri * restrict p2, int nth)
{
int l,lmax=gen->lmax;
Tb lam_1,lam_2,scale;
int nv2 = (nth+VLEN-1)/VLEN;
iter_to_ieee(sth,cth,&l,&lam_1,&lam_2,&scale,gen,nv2);
job->opcnt += (l-gen->m) * 4*nth;
if (l>lmax) return;
job->opcnt += (lmax+1-l) * 8*nth;
const sharp_ylmgen_dbl2 * restrict rf = gen->rf;
const dcmplx * restrict alm=job->almtmp;
int full_ieee=1;
Tb corfac;
for (int i=0; i<nv2; ++i)
{
getCorfac(scale.v[i], &corfac.v[i], gen->cf);
full_ieee &= vallTrue(vge(scale.v[i],vload(sharp_minscale)));
}
while((!full_ieee) && (l<=lmax))
{
Tv ar1=vload(creal(alm[l ])), ai1=vload(cimag(alm[l ]));
Tv ar2=vload(creal(alm[l+1])), ai2=vload(cimag(alm[l+1]));
Tv f10=vload(rf[l ].f[0]), f11=vload(rf[l ].f[1]),
f20=vload(rf[l+1].f[0]), f21=vload(rf[l+1].f[1]);
full_ieee=1;
for (int i=0; i<nv2; ++i)
{
lam_1.v[i] = f10*cth.v[i]*lam_2.v[i] - f11*lam_1.v[i];
vfmaeq(p1->r.v[i],lam_2.v[i]*corfac.v[i],ar1);
vfmaeq(p1->i.v[i],lam_2.v[i]*corfac.v[i],ai1);
lam_2.v[i] = f20*cth.v[i]*lam_1.v[i] - f21*lam_2.v[i];
Tm mask = vgt(vabs(lam_2.v[i]),vload(sharp_ftol));
if (vanyTrue(mask))
{
vmuleq_mask(mask,lam_1.v[i],vload(sharp_fsmall));
vmuleq_mask(mask,lam_2.v[i],vload(sharp_fsmall));
vaddeq_mask(mask,scale.v[i],vone);
getCorfac(scale.v[i], &corfac.v[i], gen->cf);
full_ieee &= vallTrue(vge(scale.v[i],vload(sharp_minscale)));
}
vfmaeq(p2->r.v[i],lam_1.v[i]*corfac.v[i],ar2);
vfmaeq(p2->i.v[i],lam_1.v[i]*corfac.v[i],ai2);
}
l+=2;
}
if (l>lmax) return;
for (int i=0; i<nv2; ++i)
{
lam_1.v[i] *= corfac.v[i];
lam_2.v[i] *= corfac.v[i];
}
alm2map_kernel(cth, p1, p2, lam_1, lam_2, rf, alm, l, lmax, nv2);
}
NOINLINE static void calc_map2alm(const Tb cth, const Tb sth,
const sharp_Ylmgen_C *gen, sharp_job *job, const Tbri * restrict p1,
const Tbri * restrict p2, int nth)
{
int lmax=gen->lmax;
Tb lam_1,lam_2,scale;
int l=gen->m;
int nv2 = (nth+VLEN-1)/VLEN;
iter_to_ieee(sth,cth,&l,&lam_1,&lam_2,&scale,gen,nv2);
job->opcnt += (l-gen->m) * 4*nth;
if (l>lmax) return;
job->opcnt += (lmax+1-l) * 8*nth;
const sharp_ylmgen_dbl2 * restrict rf = gen->rf;
dcmplx * restrict alm=job->almtmp;
int full_ieee=1;
Tb corfac;
for (int i=0; i<nv2; ++i)
{
getCorfac(scale.v[i], &corfac.v[i], gen->cf);
full_ieee &= vallTrue(vge(scale.v[i],vload(sharp_minscale)));
}
while ((!full_ieee) && (l<=lmax))
{
full_ieee=1;
Tv f10=vload(rf[l ].f[0]), f11=vload(rf[l ].f[1]),
f20=vload(rf[l+1].f[0]), f21=vload(rf[l+1].f[1]);
Tv atmp[4] = {vzero, vzero, vzero, vzero};
for (int i=0; i<nv2; ++i)
{
lam_1.v[i] = f10*cth.v[i]*lam_2.v[i] - f11*lam_1.v[i];
vfmaeq(atmp[0],lam_2.v[i]*corfac.v[i],p1->r.v[i]);
vfmaeq(atmp[1],lam_2.v[i]*corfac.v[i],p1->i.v[i]);
lam_2.v[i] = f20*cth.v[i]*lam_1.v[i] - f21*lam_2.v[i];
Tm mask = vgt(vabs(lam_2.v[i]),vload(sharp_ftol));
if (vanyTrue(mask))
{
vmuleq_mask(mask,lam_1.v[i],vload(sharp_fsmall));
vmuleq_mask(mask,lam_2.v[i],vload(sharp_fsmall));
vaddeq_mask(mask,scale.v[i],vone);
getCorfac(scale.v[i], &corfac.v[i], gen->cf);
full_ieee &= vallTrue(vge(scale.v[i],vload(sharp_minscale)));
}
vfmaeq(atmp[2],lam_1.v[i]*corfac.v[i],p2->r.v[i]);
vfmaeq(atmp[3],lam_1.v[i]*corfac.v[i],p2->i.v[i]);
}
vhsum_cmplx_special (atmp[0], atmp[1], atmp[2], atmp[3], &alm[l]);
l+=2;
}
for (int i=0; i<nv2; ++i)
{
lam_1.v[i] *= corfac.v[i];
lam_2.v[i] *= corfac.v[i];
}
map2alm_kernel(cth, p1, p2, lam_1, lam_2, rf, alm, l, lmax, nv2);
}
#define VZERO(var) do { memset(&(var),0,sizeof(var)); } while(0)
NOINLINE static void inner_loop_a2m(sharp_job *job, const int *ispair,
const double *cth_, const double *sth_, int llim, int ulim,
sharp_Ylmgen_C *gen, int mi, const int *mlim)
{
const int nval=nvec*VLEN;
const int m = job->ainfo->mval[mi];
sharp_Ylmgen_prepare (gen, m);
switch (job->type)
{
case SHARP_ALM2MAP:
case SHARP_ALM2MAP_DERIV1:
{
if (job->spin==0)
{
int ith=0;
int itgt[nvec*VLEN];
while (ith<ulim-llim)
{
Tburi p1,p2; VZERO(p1); VZERO(p2);
Tbu cth, sth;
int nth=0;
while ((nth<nval)&&(ith<ulim-llim))
{
if (mlim[ith]>=m)
{
itgt[nth] = ith;
cth.s[nth]=cth_[ith]; sth.s[nth]=sth_[ith];
++nth;
}
else
{
int phas_idx = ith*job->s_th + mi*job->s_m;
job->phase[phas_idx] = job->phase[phas_idx+1] = 0;
}
++ith;
}
if (nth>0)
{
int i2=((nth+VLEN-1)/VLEN)*VLEN;
for (int i=nth; i<i2; ++i)
{
cth.s[i]=cth.s[nth-1];
sth.s[i]=sth.s[nth-1];
}
calc_alm2map (cth.b,sth.b,gen,job,&p1.b,&p2.b,nth);
for (int i=0; i<nth; ++i)
{
int tgt=itgt[i];
int phas_idx = tgt*job->s_th + mi*job->s_m;
complex double r1 = p1.s.r[i] + p1.s.i[i]*_Complex_I,
r2 = p2.s.r[i] + p2.s.i[i]*_Complex_I;
job->phase[phas_idx] = r1+r2;
if (ispair[tgt])
job->phase[phas_idx+1] = r1-r2;
}
}
}
}
else
{
UTIL_FAIL("only spin==0 allowed at the moment");
}
break;
}
default:
{
UTIL_FAIL("must not happen");
break;
}
}
}
NOINLINE static void inner_loop_m2a(sharp_job *job, const int *ispair,
const double *cth_, const double *sth_, int llim, int ulim,
sharp_Ylmgen_C *gen, int mi, const int *mlim)
{
const int nval=nvec*VLEN;
const int m = job->ainfo->mval[mi];
sharp_Ylmgen_prepare (gen, m);
switch (job->type)
{
case SHARP_MAP2ALM:
{
if (job->spin==0)
{
int ith=0;
while (ith<ulim-llim)
{
Tburi p1,p2; VZERO(p1); VZERO(p2);
Tbu cth, sth;
int nth=0;
while ((nth<nval)&&(ith<ulim-llim))
{
if (mlim[ith]>=m)
{
cth.s[nth]=cth_[ith]; sth.s[nth]=sth_[ith];
int phas_idx = ith*job->s_th + mi*job->s_m;
dcmplx ph1=job->phase[phas_idx];
dcmplx ph2=ispair[ith] ? job->phase[phas_idx+1] : 0.;
p1.s.r[nth]=creal(ph1+ph2); p1.s.i[nth]=cimag(ph1+ph2);
p2.s.r[nth]=creal(ph1-ph2); p2.s.i[nth]=cimag(ph1-ph2);
++nth;
}
++ith;
}
if (nth>0)
{
int i2=((nth+VLEN-1)/VLEN)*VLEN;
for (int i=nth; i<i2; ++i)
{
cth.s[i]=cth.s[nth-1];
sth.s[i]=sth.s[nth-1];
p1.s.r[i]=p1.s.i[i]=p2.s.r[i]=p2.s.i[i]=0.;
}
calc_map2alm(cth.b,sth.b,gen,job,&p1.b,&p2.b, nth);
}
}
}
else
{
UTIL_FAIL("only spin==0 allowed at the moment");
}
break;
}
default:
{
UTIL_FAIL("must not happen");
break;
}
}
}
void inner_loop (sharp_job *job, const int *ispair,
const double *cth_, const double *sth_, int llim, int ulim,
sharp_Ylmgen_C *gen, int mi, const int *mlim)
{
(job->type==SHARP_MAP2ALM) ?
inner_loop_m2a(job,ispair,cth_,sth_,llim,ulim,gen,mi,mlim) :
inner_loop_a2m(job,ispair,cth_,sth_,llim,ulim,gen,mi,mlim);
}
#undef VZERO
int sharp_veclen(void)
{
return VLEN;
}
int sharp_max_nvec(void)
{
return nvec;
}