/* * This file is part of libsharp. * * libsharp is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * libsharp is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with libsharp; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* libsharp is being developed at the Max-Planck-Institut fuer Astrophysik */ /* \file sharp_vecsupport.h * Convenience functions for vector arithmetics * * Copyright (C) 2012-2019 Max-Planck-Society * Author: Martin Reinecke */ #ifndef SHARP_VECSUPPORT_H #define SHARP_VECSUPPORT_H #include #ifndef VLEN #if (defined(__AVX512F__)) #define VLEN 8 #elif (defined (__AVX__)) #define VLEN 4 #elif (defined (__SSE2__)) #define VLEN 2 #else #define VLEN 1 #endif #endif typedef double Ts; #if (VLEN==1) typedef double Tv; typedef int Tm; #define vload(a) (a) #define vzero 0. #define vone 1. #define vaddeq_mask(mask,a,b) if (mask) (a)+=(b); #define vsubeq_mask(mask,a,b) if (mask) (a)-=(b); #define vmuleq_mask(mask,a,b) if (mask) (a)*=(b); #define vneg(a) (-(a)) #define vabs(a) fabs(a) #define vsqrt(a) sqrt(a) #define vlt(a,b) ((a)<(b)) #define vgt(a,b) ((a)>(b)) #define vge(a,b) ((a)>=(b)) #define vne(a,b) ((a)!=(b)) #define vand_mask(a,b) ((a)&&(b)) #define vor_mask(a,b) ((a)||(b)) static inline Tv vmin (Tv a, Tv b) { return (ab) ? a : b; } #define vanyTrue(a) (a) #define vallTrue(a) (a) static inline void vhsum_cmplx_special (Tv a, Tv b, Tv c, Tv d, _Complex double * restrict cc) { cc[0] += a+_Complex_I*b; cc[1] += c+_Complex_I*d; } #endif #if (VLEN==2) #include #if defined (__SSE3__) #include #endif #if defined (__SSE4_1__) #include #endif typedef __m128d Tv; typedef __m128d Tm; #if defined(__SSE4_1__) #define vblend__(m,a,b) _mm_blendv_pd(b,a,m) #else static inline Tv vblend__(Tv m, Tv a, Tv b) { return _mm_or_pd(_mm_and_pd(a,m),_mm_andnot_pd(m,b)); } #endif #define vload(a) _mm_set1_pd(a) #define vzero _mm_setzero_pd() #define vone vload(1.) #define vaddeq_mask(mask,a,b) a+=vblend__(mask,b,vzero) #define vsubeq_mask(mask,a,b) a-=vblend__(mask,b,vzero) #define vmuleq_mask(mask,a,b) a*=vblend__(mask,b,vone) #define vneg(a) _mm_xor_pd(vload(-0.),a) #define vabs(a) _mm_andnot_pd(vload(-0.),a) #define vsqrt(a) _mm_sqrt_pd(a) #define vlt(a,b) _mm_cmplt_pd(a,b) #define vgt(a,b) _mm_cmpgt_pd(a,b) #define vge(a,b) _mm_cmpge_pd(a,b) #define vne(a,b) _mm_cmpneq_pd(a,b) #define vand_mask(a,b) _mm_and_pd(a,b) #define vor_mask(a,b) _mm_or_pd(a,b) #define vmin(a,b) _mm_min_pd(a,b) #define vmax(a,b) _mm_max_pd(a,b); #define vanyTrue(a) (_mm_movemask_pd(a)!=0) #define vallTrue(a) (_mm_movemask_pd(a)==3) static inline void vhsum_cmplx_special (Tv a, Tv b, Tv c, Tv d, _Complex double * restrict cc) { union {Tv v; _Complex double c; } u1, u2; #if defined(__SSE3__) u1.v = _mm_hadd_pd(a,b); u2.v=_mm_hadd_pd(c,d); #else u1.v = _mm_shuffle_pd(a,b,_MM_SHUFFLE2(0,1)) + _mm_shuffle_pd(a,b,_MM_SHUFFLE2(1,0)); u2.v = _mm_shuffle_pd(c,d,_MM_SHUFFLE2(0,1)) + _mm_shuffle_pd(c,d,_MM_SHUFFLE2(1,0)); #endif cc[0]+=u1.c; cc[1]+=u2.c; } #endif #if (VLEN==4) #include typedef __m256d Tv; typedef __m256d Tm; #define vblend__(m,a,b) _mm256_blendv_pd(b,a,m) #define vload(a) _mm256_set1_pd(a) #define vzero _mm256_setzero_pd() #define vone vload(1.) #define vaddeq_mask(mask,a,b) a+=vblend__(mask,b,vzero) #define vsubeq_mask(mask,a,b) a-=vblend__(mask,b,vzero) #define vmuleq_mask(mask,a,b) a*=vblend__(mask,b,vone) #define vneg(a) _mm256_xor_pd(vload(-0.),a) #define vabs(a) _mm256_andnot_pd(vload(-0.),a) #define vsqrt(a) _mm256_sqrt_pd(a) #define vlt(a,b) _mm256_cmp_pd(a,b,_CMP_LT_OQ) #define vgt(a,b) _mm256_cmp_pd(a,b,_CMP_GT_OQ) #define vge(a,b) _mm256_cmp_pd(a,b,_CMP_GE_OQ) #define vne(a,b) _mm256_cmp_pd(a,b,_CMP_NEQ_OQ) #define vand_mask(a,b) _mm256_and_pd(a,b) #define vor_mask(a,b) _mm256_or_pd(a,b) #define vmin(a,b) _mm256_min_pd(a,b) #define vmax(a,b) _mm256_max_pd(a,b) #define vanyTrue(a) (_mm256_movemask_pd(a)!=0) #define vallTrue(a) (_mm256_movemask_pd(a)==15) static inline void vhsum_cmplx_special (Tv a, Tv b, Tv c, Tv d, _Complex double * restrict cc) { Tv tmp1=_mm256_hadd_pd(a,b), tmp2=_mm256_hadd_pd(c,d); Tv tmp3=_mm256_permute2f128_pd(tmp1,tmp2,49), tmp4=_mm256_permute2f128_pd(tmp1,tmp2,32); tmp1=tmp3+tmp4; union {Tv v; _Complex double c[2]; } u; u.v=tmp1; cc[0]+=u.c[0]; cc[1]+=u.c[1]; } #endif #if (VLEN==8) #include typedef __m512d Tv; typedef __mmask8 Tm; #define vload(a) _mm512_set1_pd(a) #define vzero _mm512_setzero_pd() #define vone vload(1.) #define vaddeq_mask(mask,a,b) a=_mm512_mask_add_pd(a,mask,a,b); #define vsubeq_mask(mask,a,b) a=_mm512_mask_sub_pd(a,mask,a,b); #define vmuleq_mask(mask,a,b) a=_mm512_mask_mul_pd(a,mask,a,b); #define vneg(a) _mm512_mul_pd(a,vload(-1.)) #define vabs(a) (__m512d)_mm512_andnot_epi64((__m512i)vload(-0.),(__m512i)a) #define vsqrt(a) _mm512_sqrt_pd(a) #define vlt(a,b) _mm512_cmp_pd_mask(a,b,_CMP_LT_OQ) #define vgt(a,b) _mm512_cmp_pd_mask(a,b,_CMP_GT_OQ) #define vge(a,b) _mm512_cmp_pd_mask(a,b,_CMP_GE_OQ) #define vne(a,b) _mm512_cmp_pd_mask(a,b,_CMP_NEQ_OQ) #define vand_mask(a,b) ((a)&(b)) #define vor_mask(a,b) ((a)|(b)) #define vmin(a,b) _mm512_min_pd(a,b) #define vmax(a,b) _mm512_max_pd(a,b) #define vanyTrue(a) (a!=0) #define vallTrue(a) (a==255) static inline void vhsum_cmplx_special (Tv a, Tv b, Tv c, Tv d, _Complex double * restrict cc) { cc[0] += _mm512_reduce_add_pd(a)+_Complex_I*_mm512_reduce_add_pd(b); cc[1] += _mm512_reduce_add_pd(c)+_Complex_I*_mm512_reduce_add_pd(d); } #endif #endif