Expose gauss_legendre_tbl publicly as gauss_legendre_roots
This commit is contained in:
parent
765831ea2b
commit
7ecd1ddc93
7 changed files with 152 additions and 65 deletions
|
@ -8,7 +8,7 @@ FULL_INCLUDE+= -I$(SD)
|
|||
HDR_$(PKG):=$(SD)/*.h
|
||||
LIB_$(PKG):=$(LIBDIR)/libsharp.a
|
||||
BIN:=sharp_testsuite
|
||||
LIBOBJ:=sharp_ylmgen_c.o sharp.o sharp_announce.o sharp_geomhelpers.o sharp_almhelpers.o sharp_core.o sharp_legendre.o
|
||||
LIBOBJ:=sharp_ylmgen_c.o sharp.o sharp_announce.o sharp_geomhelpers.o sharp_almhelpers.o sharp_core.o sharp_legendre.o sharp_legendre_roots.o
|
||||
ALLOBJ:=$(LIBOBJ) sharp_testsuite.o
|
||||
LIBOBJ:=$(LIBOBJ:%=$(OD)/%)
|
||||
ALLOBJ:=$(ALLOBJ:%=$(OD)/%)
|
||||
|
|
|
@ -40,5 +40,6 @@
|
|||
|
||||
#include "sharp_lowlevel.h"
|
||||
#include "sharp_legendre.h"
|
||||
#include "sharp_legendre_roots.h"
|
||||
|
||||
#endif
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
|
||||
#include <math.h>
|
||||
#include "sharp_geomhelpers.h"
|
||||
#include "sharp_legendre_roots.h"
|
||||
#include "c_utils.h"
|
||||
#include "ls_fft.h"
|
||||
#include <stdio.h>
|
||||
|
@ -106,69 +107,6 @@ void sharp_make_weighted_healpix_geom_info (int nside, int stride,
|
|||
sharp_make_subset_healpix_geom_info(nside, stride, 4 * nside - 1, NULL, weight, geom_info);
|
||||
}
|
||||
|
||||
static inline double one_minus_x2 (double x)
|
||||
{ return (fabs(x)>0.1) ? (1.+x)*(1.-x) : 1.-x*x; }
|
||||
|
||||
/* Function adapted from GNU GSL file glfixed.c
|
||||
Original author: Pavel Holoborodko (http://www.holoborodko.com)
|
||||
|
||||
Adjustments by M. Reinecke
|
||||
- adjusted interface (keep epsilon internal, return full number of points)
|
||||
- removed precomputed tables
|
||||
- tweaked Newton iteration to obtain higher accuracy */
|
||||
static void gauss_legendre_tbl(int n, double *x, double *w)
|
||||
{
|
||||
const double pi = 3.141592653589793238462643383279502884197;
|
||||
const double eps = 3e-14;
|
||||
int m = (n+1)>>1;
|
||||
|
||||
double t0 = 1 - (1-1./n) / (8.*n*n);
|
||||
double t1 = 1./(4.*n+2.);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
int i;
|
||||
#pragma omp for schedule(dynamic,100)
|
||||
for (i=1; i<=m; ++i)
|
||||
{
|
||||
double x0 = cos(pi * ((i<<2)-1) * t1) * t0;
|
||||
|
||||
int dobreak=0;
|
||||
int j=0;
|
||||
double dpdx;
|
||||
while(1)
|
||||
{
|
||||
double P_1 = 1.0;
|
||||
double P0 = x0;
|
||||
double dx, x1;
|
||||
|
||||
for (int k=2; k<=n; k++)
|
||||
{
|
||||
double P_2 = P_1;
|
||||
P_1 = P0;
|
||||
// P0 = ((2*k-1)*x0*P_1-(k-1)*P_2)/k;
|
||||
P0 = x0*P_1 + (k-1.)/k * (x0*P_1-P_2);
|
||||
}
|
||||
|
||||
dpdx = (P_1 - x0*P0) * n / one_minus_x2(x0);
|
||||
|
||||
/* Newton step */
|
||||
x1 = x0 - P0/dpdx;
|
||||
dx = x0-x1;
|
||||
x0 = x1;
|
||||
if (dobreak) break;
|
||||
|
||||
if (fabs(dx)<=eps) dobreak=1;
|
||||
UTIL_ASSERT(++j<100,"convergence problem");
|
||||
}
|
||||
|
||||
x[i-1] = -x0;
|
||||
x[n-i] = x0;
|
||||
w[i-1] = w[n-i] = 2. / (one_minus_x2(x0) * dpdx * dpdx);
|
||||
}
|
||||
} // end of parallel region
|
||||
}
|
||||
|
||||
void sharp_make_gauss_geom_info (int nrings, int nphi, double phi0,
|
||||
int stride_lon, int stride_lat, sharp_geom_info **geom_info)
|
||||
{
|
||||
|
@ -181,7 +119,7 @@ void sharp_make_gauss_geom_info (int nrings, int nphi, double phi0,
|
|||
ptrdiff_t *ofs=RALLOC(ptrdiff_t,nrings);
|
||||
int *stride_=RALLOC(int,nrings);
|
||||
|
||||
gauss_legendre_tbl(nrings,theta,weight);
|
||||
sharp_legendre_roots(nrings,theta,weight);
|
||||
for (int m=0; m<nrings; ++m)
|
||||
{
|
||||
theta[m] = acos(-theta[m]);
|
||||
|
|
67
libsharp/sharp_legendre_roots.c
Normal file
67
libsharp/sharp_legendre_roots.c
Normal file
|
@ -0,0 +1,67 @@
|
|||
/* Function adapted from GNU GSL file glfixed.c
|
||||
Original author: Pavel Holoborodko (http://www.holoborodko.com)
|
||||
|
||||
Adjustments by M. Reinecke
|
||||
- adjusted interface (keep epsilon internal, return full number of points)
|
||||
- removed precomputed tables
|
||||
- tweaked Newton iteration to obtain higher accuracy */
|
||||
|
||||
#include <math.h>
|
||||
#include "sharp_legendre_roots.h"
|
||||
#include "c_utils.h"
|
||||
|
||||
static inline double one_minus_x2 (double x)
|
||||
{ return (fabs(x)>0.1) ? (1.+x)*(1.-x) : 1.-x*x; }
|
||||
|
||||
void sharp_legendre_roots(int n, double *x, double *w)
|
||||
{
|
||||
const double pi = 3.141592653589793238462643383279502884197;
|
||||
const double eps = 3e-14;
|
||||
int m = (n+1)>>1;
|
||||
|
||||
double t0 = 1 - (1-1./n) / (8.*n*n);
|
||||
double t1 = 1./(4.*n+2.);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
int i;
|
||||
#pragma omp for schedule(dynamic,100)
|
||||
for (i=1; i<=m; ++i)
|
||||
{
|
||||
double x0 = cos(pi * ((i<<2)-1) * t1) * t0;
|
||||
|
||||
int dobreak=0;
|
||||
int j=0;
|
||||
double dpdx;
|
||||
while(1)
|
||||
{
|
||||
double P_1 = 1.0;
|
||||
double P0 = x0;
|
||||
double dx, x1;
|
||||
|
||||
for (int k=2; k<=n; k++)
|
||||
{
|
||||
double P_2 = P_1;
|
||||
P_1 = P0;
|
||||
// P0 = ((2*k-1)*x0*P_1-(k-1)*P_2)/k;
|
||||
P0 = x0*P_1 + (k-1.)/k * (x0*P_1-P_2);
|
||||
}
|
||||
|
||||
dpdx = (P_1 - x0*P0) * n / one_minus_x2(x0);
|
||||
|
||||
/* Newton step */
|
||||
x1 = x0 - P0/dpdx;
|
||||
dx = x0-x1;
|
||||
x0 = x1;
|
||||
if (dobreak) break;
|
||||
|
||||
if (fabs(dx)<=eps) dobreak=1;
|
||||
UTIL_ASSERT(++j<100,"convergence problem");
|
||||
}
|
||||
|
||||
x[i-1] = -x0;
|
||||
x[n-i] = x0;
|
||||
w[i-1] = w[n-i] = 2. / (one_minus_x2(x0) * dpdx * dpdx);
|
||||
}
|
||||
} // end of parallel region
|
||||
}
|
50
libsharp/sharp_legendre_roots.h
Normal file
50
libsharp/sharp_legendre_roots.h
Normal file
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
* This file is part of libsharp.
|
||||
*
|
||||
* libsharp is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* libsharp is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with libsharp; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
* libsharp is being developed at the Max-Planck-Institut fuer Astrophysik
|
||||
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
|
||||
* (DLR).
|
||||
*/
|
||||
|
||||
/*! \file sharp_legendre_roots.h
|
||||
*
|
||||
* Copyright (C) 2006-2012 Max-Planck-Society
|
||||
* \author Martin Reinecke
|
||||
*/
|
||||
|
||||
#ifndef SHARP_LEGENDRE_ROOTS_H
|
||||
#define SHARP_LEGENDRE_ROOTS_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*! Computes roots and Gaussian quadrature weights for Legendre polynomial
|
||||
of degree \a n.
|
||||
\param n Order of Legendre polynomial
|
||||
\param x Array of length \a n for output (root position)
|
||||
\param w Array of length \a w for output (weight for Gaussian quadrature)
|
||||
*/
|
||||
void sharp_legendre_roots(int n, double *x, double *w);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -1,5 +1,7 @@
|
|||
import numpy as np
|
||||
|
||||
__all__ = ['legendre_transform', 'legendre_roots']
|
||||
|
||||
cdef extern from "sharp.h":
|
||||
ctypedef long ptrdiff_t
|
||||
|
||||
|
@ -9,6 +11,7 @@ cdef extern from "sharp.h":
|
|||
double *out, ptrdiff_t nx)
|
||||
void sharp_legendre_transform_recfac(double *r, ptrdiff_t lmax)
|
||||
void sharp_legendre_transform_recfac_s(float *r, ptrdiff_t lmax)
|
||||
void sharp_legendre_roots(int n, double *x, double *w)
|
||||
|
||||
|
||||
def legendre_transform(x, bl, out=None):
|
||||
|
@ -41,3 +44,13 @@ def _legendre_transform_s(float[::1] x, float[::1] bl, float[::1] out):
|
|||
sharp_legendre_transform_s(&bl[0], NULL, bl.shape[0] - 1, &x[0], &out[0], x.shape[0])
|
||||
return np.asarray(out)
|
||||
|
||||
|
||||
def legendre_roots(n):
|
||||
x = np.empty(n, np.double)
|
||||
w = np.empty(n, np.double)
|
||||
cdef double[::1] x_buf = x, w_buf = w
|
||||
if not (x_buf.shape[0] == w_buf.shape[0] == n):
|
||||
raise AssertionError()
|
||||
if n > 0:
|
||||
sharp_legendre_roots(n, &x_buf[0], &w_buf[0])
|
||||
return x, w
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
from scipy.special import legendre
|
||||
from scipy.special import p_roots
|
||||
import libsharp
|
||||
|
||||
from numpy.testing import assert_allclose
|
||||
|
@ -39,3 +40,20 @@ def test_legendre_transform():
|
|||
for ntheta in nthetas_to_try:
|
||||
for lmax in [0, 1, 2, 3, 20] + list(np.random.randint(50, size=4)):
|
||||
yield check_legendre_transform, lmax, ntheta
|
||||
|
||||
def check_legendre_roots(n):
|
||||
xs, ws = ([], []) if n == 0 else p_roots(n) # from SciPy
|
||||
xl, wl = libsharp.legendre_roots(n)
|
||||
assert_allclose(xs, xl)
|
||||
assert_allclose(ws, wl)
|
||||
|
||||
def test_legendre_roots():
|
||||
"""
|
||||
Test the Legendre root-finding algorithm from libsharp by comparing it with
|
||||
the SciPy version.
|
||||
"""
|
||||
yield check_legendre_roots, 0
|
||||
yield check_legendre_roots, 1
|
||||
yield check_legendre_roots, 32
|
||||
yield check_legendre_roots, 33
|
||||
yield check_legendre_roots, 128
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue