Expose gauss_legendre_tbl publicly as gauss_legendre_roots

This commit is contained in:
Dag Sverre Seljebotn 2015-04-24 09:06:20 +02:00
parent 765831ea2b
commit 7ecd1ddc93
7 changed files with 152 additions and 65 deletions

View file

@ -8,7 +8,7 @@ FULL_INCLUDE+= -I$(SD)
HDR_$(PKG):=$(SD)/*.h
LIB_$(PKG):=$(LIBDIR)/libsharp.a
BIN:=sharp_testsuite
LIBOBJ:=sharp_ylmgen_c.o sharp.o sharp_announce.o sharp_geomhelpers.o sharp_almhelpers.o sharp_core.o sharp_legendre.o
LIBOBJ:=sharp_ylmgen_c.o sharp.o sharp_announce.o sharp_geomhelpers.o sharp_almhelpers.o sharp_core.o sharp_legendre.o sharp_legendre_roots.o
ALLOBJ:=$(LIBOBJ) sharp_testsuite.o
LIBOBJ:=$(LIBOBJ:%=$(OD)/%)
ALLOBJ:=$(ALLOBJ:%=$(OD)/%)

View file

@ -40,5 +40,6 @@
#include "sharp_lowlevel.h"
#include "sharp_legendre.h"
#include "sharp_legendre_roots.h"
#endif

View file

@ -32,6 +32,7 @@
#include <math.h>
#include "sharp_geomhelpers.h"
#include "sharp_legendre_roots.h"
#include "c_utils.h"
#include "ls_fft.h"
#include <stdio.h>
@ -106,69 +107,6 @@ void sharp_make_weighted_healpix_geom_info (int nside, int stride,
sharp_make_subset_healpix_geom_info(nside, stride, 4 * nside - 1, NULL, weight, geom_info);
}
static inline double one_minus_x2 (double x)
{ return (fabs(x)>0.1) ? (1.+x)*(1.-x) : 1.-x*x; }
/* Function adapted from GNU GSL file glfixed.c
Original author: Pavel Holoborodko (http://www.holoborodko.com)
Adjustments by M. Reinecke
- adjusted interface (keep epsilon internal, return full number of points)
- removed precomputed tables
- tweaked Newton iteration to obtain higher accuracy */
static void gauss_legendre_tbl(int n, double *x, double *w)
{
const double pi = 3.141592653589793238462643383279502884197;
const double eps = 3e-14;
int m = (n+1)>>1;
double t0 = 1 - (1-1./n) / (8.*n*n);
double t1 = 1./(4.*n+2.);
#pragma omp parallel
{
int i;
#pragma omp for schedule(dynamic,100)
for (i=1; i<=m; ++i)
{
double x0 = cos(pi * ((i<<2)-1) * t1) * t0;
int dobreak=0;
int j=0;
double dpdx;
while(1)
{
double P_1 = 1.0;
double P0 = x0;
double dx, x1;
for (int k=2; k<=n; k++)
{
double P_2 = P_1;
P_1 = P0;
// P0 = ((2*k-1)*x0*P_1-(k-1)*P_2)/k;
P0 = x0*P_1 + (k-1.)/k * (x0*P_1-P_2);
}
dpdx = (P_1 - x0*P0) * n / one_minus_x2(x0);
/* Newton step */
x1 = x0 - P0/dpdx;
dx = x0-x1;
x0 = x1;
if (dobreak) break;
if (fabs(dx)<=eps) dobreak=1;
UTIL_ASSERT(++j<100,"convergence problem");
}
x[i-1] = -x0;
x[n-i] = x0;
w[i-1] = w[n-i] = 2. / (one_minus_x2(x0) * dpdx * dpdx);
}
} // end of parallel region
}
void sharp_make_gauss_geom_info (int nrings, int nphi, double phi0,
int stride_lon, int stride_lat, sharp_geom_info **geom_info)
{
@ -181,7 +119,7 @@ void sharp_make_gauss_geom_info (int nrings, int nphi, double phi0,
ptrdiff_t *ofs=RALLOC(ptrdiff_t,nrings);
int *stride_=RALLOC(int,nrings);
gauss_legendre_tbl(nrings,theta,weight);
sharp_legendre_roots(nrings,theta,weight);
for (int m=0; m<nrings; ++m)
{
theta[m] = acos(-theta[m]);

View file

@ -0,0 +1,67 @@
/* Function adapted from GNU GSL file glfixed.c
Original author: Pavel Holoborodko (http://www.holoborodko.com)
Adjustments by M. Reinecke
- adjusted interface (keep epsilon internal, return full number of points)
- removed precomputed tables
- tweaked Newton iteration to obtain higher accuracy */
#include <math.h>
#include "sharp_legendre_roots.h"
#include "c_utils.h"
static inline double one_minus_x2 (double x)
{ return (fabs(x)>0.1) ? (1.+x)*(1.-x) : 1.-x*x; }
void sharp_legendre_roots(int n, double *x, double *w)
{
const double pi = 3.141592653589793238462643383279502884197;
const double eps = 3e-14;
int m = (n+1)>>1;
double t0 = 1 - (1-1./n) / (8.*n*n);
double t1 = 1./(4.*n+2.);
#pragma omp parallel
{
int i;
#pragma omp for schedule(dynamic,100)
for (i=1; i<=m; ++i)
{
double x0 = cos(pi * ((i<<2)-1) * t1) * t0;
int dobreak=0;
int j=0;
double dpdx;
while(1)
{
double P_1 = 1.0;
double P0 = x0;
double dx, x1;
for (int k=2; k<=n; k++)
{
double P_2 = P_1;
P_1 = P0;
// P0 = ((2*k-1)*x0*P_1-(k-1)*P_2)/k;
P0 = x0*P_1 + (k-1.)/k * (x0*P_1-P_2);
}
dpdx = (P_1 - x0*P0) * n / one_minus_x2(x0);
/* Newton step */
x1 = x0 - P0/dpdx;
dx = x0-x1;
x0 = x1;
if (dobreak) break;
if (fabs(dx)<=eps) dobreak=1;
UTIL_ASSERT(++j<100,"convergence problem");
}
x[i-1] = -x0;
x[n-i] = x0;
w[i-1] = w[n-i] = 2. / (one_minus_x2(x0) * dpdx * dpdx);
}
} // end of parallel region
}

View file

@ -0,0 +1,50 @@
/*
* This file is part of libsharp.
*
* libsharp is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libsharp is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libsharp; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* libsharp is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/*! \file sharp_legendre_roots.h
*
* Copyright (C) 2006-2012 Max-Planck-Society
* \author Martin Reinecke
*/
#ifndef SHARP_LEGENDRE_ROOTS_H
#define SHARP_LEGENDRE_ROOTS_H
#ifdef __cplusplus
extern "C" {
#endif
/*! Computes roots and Gaussian quadrature weights for Legendre polynomial
of degree \a n.
\param n Order of Legendre polynomial
\param x Array of length \a n for output (root position)
\param w Array of length \a w for output (weight for Gaussian quadrature)
*/
void sharp_legendre_roots(int n, double *x, double *w);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,5 +1,7 @@
import numpy as np
__all__ = ['legendre_transform', 'legendre_roots']
cdef extern from "sharp.h":
ctypedef long ptrdiff_t
@ -9,6 +11,7 @@ cdef extern from "sharp.h":
double *out, ptrdiff_t nx)
void sharp_legendre_transform_recfac(double *r, ptrdiff_t lmax)
void sharp_legendre_transform_recfac_s(float *r, ptrdiff_t lmax)
void sharp_legendre_roots(int n, double *x, double *w)
def legendre_transform(x, bl, out=None):
@ -41,3 +44,13 @@ def _legendre_transform_s(float[::1] x, float[::1] bl, float[::1] out):
sharp_legendre_transform_s(&bl[0], NULL, bl.shape[0] - 1, &x[0], &out[0], x.shape[0])
return np.asarray(out)
def legendre_roots(n):
x = np.empty(n, np.double)
w = np.empty(n, np.double)
cdef double[::1] x_buf = x, w_buf = w
if not (x_buf.shape[0] == w_buf.shape[0] == n):
raise AssertionError()
if n > 0:
sharp_legendre_roots(n, &x_buf[0], &w_buf[0])
return x, w

View file

@ -1,5 +1,6 @@
import numpy as np
from scipy.special import legendre
from scipy.special import p_roots
import libsharp
from numpy.testing import assert_allclose
@ -39,3 +40,20 @@ def test_legendre_transform():
for ntheta in nthetas_to_try:
for lmax in [0, 1, 2, 3, 20] + list(np.random.randint(50, size=4)):
yield check_legendre_transform, lmax, ntheta
def check_legendre_roots(n):
xs, ws = ([], []) if n == 0 else p_roots(n) # from SciPy
xl, wl = libsharp.legendre_roots(n)
assert_allclose(xs, xl)
assert_allclose(ws, wl)
def test_legendre_roots():
"""
Test the Legendre root-finding algorithm from libsharp by comparing it with
the SciPy version.
"""
yield check_legendre_roots, 0
yield check_legendre_roots, 1
yield check_legendre_roots, 32
yield check_legendre_roots, 33
yield check_legendre_roots, 128