mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-23 03:08:01 +00:00
2185846e90
* Updat ebounds * fix mistake * add plot script * fix which sims * Add Poisson * Just docs * Hide things to __main__ * Rename paths * Move old script * Remove radpos * Paths renaming * Paths renaming * Remove trunk stuff * Add import * Add nearest neighbour search * Add Quijote fiducial indices * Add final snapshot matching * Add fiducial observer selection * add boxsizes * Add reading functions * Little stuff * Bring back the fiducial observer * Add arguments * Add quijote paths * Add notes * Get this running * Add yaml * Remove Poisson stuff * Get the 2PCF script running * Add not finished htings * Remove comment * Verbosity only on 0th rank! * Update plotting style * Add nearest neighbour CDF * Save radial distance too * Add centres * Add basic plotting
155 lines
5.1 KiB
Python
155 lines
5.1 KiB
Python
# Copyright (C) 2022 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
A script to calculate the KNN-CDF for a set of halo catalogues.
|
|
"""
|
|
from argparse import ArgumentParser
|
|
from datetime import datetime
|
|
from distutils.util import strtobool
|
|
|
|
import joblib
|
|
import numpy
|
|
import yaml
|
|
from mpi4py import MPI
|
|
from sklearn.neighbors import NearestNeighbors
|
|
from taskmaster import work_delegation
|
|
|
|
try:
|
|
import csiborgtools
|
|
except ModuleNotFoundError:
|
|
import sys
|
|
|
|
sys.path.append("../")
|
|
import csiborgtools
|
|
|
|
from utils import open_catalogues
|
|
|
|
|
|
def do_auto(args, config, cats, nsim, paths):
|
|
"""
|
|
Calculate the kNN-CDF single catalogue auto-correlation.
|
|
|
|
Parameters
|
|
----------
|
|
args : argparse.Namespace
|
|
Command line arguments.
|
|
config : dict
|
|
Configuration dictionary.
|
|
cats : dict
|
|
Dictionary of halo catalogues. Keys are simulation indices, values are
|
|
the catalogues.
|
|
nsim : int
|
|
Simulation index.
|
|
paths : csiborgtools.paths.Paths
|
|
Paths object.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
rvs_gen = csiborgtools.clustering.RVSinsphere(args.Rmax)
|
|
knncdf = csiborgtools.clustering.kNN_1DCDF()
|
|
cat = cats[nsim]
|
|
knn = cat.knn(in_initial=False)
|
|
rs, cdf = knncdf(
|
|
knn, rvs_gen=rvs_gen, nneighbours=config["nneighbours"],
|
|
rmin=config["rmin"], rmax=config["rmax"],
|
|
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
|
|
batch_size=int(config["batch_size"]), random_state=config["seed"])
|
|
totvol = (4 / 3) * numpy.pi * args.Rmax ** 3
|
|
fout = paths.knnauto(args.simname, args.run, nsim)
|
|
if args.verbose:
|
|
print(f"Saving output to `{fout}`.")
|
|
joblib.dump({"rs": rs, "cdf": cdf, "ndensity": len(cat) / totvol}, fout)
|
|
|
|
|
|
def do_cross_rand(args, config, cats, nsim, paths):
|
|
"""
|
|
Calculate the kNN-CDF cross catalogue random correlation.
|
|
|
|
Parameters
|
|
----------
|
|
args : argparse.Namespace
|
|
Command line arguments.
|
|
config : dict
|
|
Configuration dictionary.
|
|
cats : dict
|
|
Dictionary of halo catalogues. Keys are simulation indices, values are
|
|
the catalogues.
|
|
nsim : int
|
|
Simulation index.
|
|
paths : csiborgtools.paths.Paths
|
|
Paths object.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
rvs_gen = csiborgtools.clustering.RVSinsphere(args.Rmax)
|
|
cat = cats[nsim]
|
|
knn1 = cat.knn(in_initial=False)
|
|
|
|
knn2 = NearestNeighbors()
|
|
pos2 = rvs_gen(len(cat).shape[0])
|
|
knn2.fit(pos2)
|
|
|
|
knncdf = csiborgtools.clustering.kNN_1DCDF()
|
|
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
|
|
knn1, knn2, rvs_gen=rvs_gen, nneighbours=int(config["nneighbours"]),
|
|
rmin=config["rmin"], rmax=config["rmax"],
|
|
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
|
|
batch_size=int(config["batch_size"]), random_state=config["seed"])
|
|
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
|
|
|
|
fout = paths.knnauto(args.simname, args.run, nsim)
|
|
if args.verbose:
|
|
print(f"Saving output to `{fout}`.", flush=True)
|
|
joblib.dump({"rs": rs, "corr": corr}, fout)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--run", type=str, help="Run name.")
|
|
parser.add_argument("--simname", type=str, choices=["csiborg", "quijote"],
|
|
help="Simulation name")
|
|
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
|
help="Indices of simulations to cross. If `-1` processes all simulations.") # noqa
|
|
parser.add_argument("--Rmax", type=float, default=155/0.705,
|
|
help="High-resolution region radius") # noqa
|
|
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
|
default=False)
|
|
args = parser.parse_args()
|
|
|
|
with open("./cluster_knn_auto.yml", "r") as file:
|
|
config = yaml.safe_load(file)
|
|
comm = MPI.COMM_WORLD
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
cats = open_catalogues(args, config, paths, comm)
|
|
|
|
if args.verbose and comm.Get_rank() == 0:
|
|
print(f"{datetime.now()}: starting to calculate the kNN statistic.")
|
|
|
|
def do_work(nsim):
|
|
if "random" in args.run:
|
|
do_cross_rand(args, config, cats, nsim, paths)
|
|
else:
|
|
do_auto(args, config, cats, nsim, paths)
|
|
|
|
nsims = list(cats.keys())
|
|
work_delegation(do_work, nsims, comm, master_verbose=args.verbose)
|
|
|
|
comm.Barrier()
|
|
if comm.Get_rank() == 0:
|
|
print(f"{datetime.now()}: all finished. Quitting.")
|