csiborgtools/notebooks/MAH/mah.py
Richard Stiskalek ee222cd010
Fix overlap runs ()
* Update nb

* Update script

* Update script

* Rename

* Update script

* Update script

* Remove warning

* Ignore minors when extracting MAH

* Fix paths bug

* Move notebooks

* Move files

* Rename and delete things

* Rename file

* Move file

* Rename things

* Remove old print statement

* Add basic MAH plot

* Add random MAH path

* Output snapshot numbers

* Add MAH random extraction

* Fix redshift bug

* Edit script

* Add extracting random MAH

* Little updates

* Add CB2 redshift

* Add some caching

* Add diagnostic plots

* Add caching

* Minor updates

* Update nb

* Update notebook

* Update script

* Add Sorce randoms

* Add CB2 varysmall

* Update nb

* Update nb

* Update nb

* Use catalogue HMF

* Move definition of radec2galactic

* Update nb

* Update import

* Update import

* Add galatic coords to catalogues

* Update nb
2024-04-08 11:23:21 +02:00

221 lines
6.9 KiB
Python

# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Script to help with `mah.py`."""
from datetime import datetime
import csiborgtools
import numpy as np
from astropy.cosmology import FlatLambdaCDM
from h5py import File
from tqdm import tqdm, trange
from cache_to_disk import cache_to_disk
from os.path import join
RANDOM_MAH_Sorce_Virgo_UPPER = np.array(
[[2.18554217, 0.16246594],
[2.93253012, 0.17284951],
[3.2939759, 0.34169001],
[3.75180723, 0.42006683],
[4.28192771, 0.44691426],
[4.61927711, 0.53819753],
[5.34216867, 0.58454257],
[5.89638554, 0.68954882],
[6.23373494, 0.73361948],
[6.45060241, 0.81341823],
[7.05301205, 0.92071572],
[7.82409639, 0.92071572],
[8.28192771, 0.95953933],
[8.61927711, 0.97956078],
[9.70361446, 1.],
[11.17349398, 1.],
[13.07710843, 1.],
[13.82409639, 1.]]
)
RANDOM_MAH_SORCE_Virgo_LOWER = np.array(
[[3.36626506e+00, 1.00000000e-02],
[3.75180723e+00, 1.10877404e-02],
[3.99277108e+00, 1.04216677e-02],
[4.30602410e+00, 1.15552746e-02],
[4.61927711e+00, 1.67577322e-02],
[4.98072289e+00, 2.14703224e-02],
[5.39036145e+00, 3.82789169e-02],
[5.89638554e+00, 5.00670000e-02],
[6.30602410e+00, 5.11116827e-02],
[7.29397590e+00, 5.32668971e-02],
[7.77590361e+00, 5.55129899e-02],
[8.11325301e+00, 6.68516464e-02],
[8.57108434e+00, 8.56515893e-02],
[9.60722892e+00, 1.32152759e-01],
[1.04265060e+01, 1.46527548e-01],
[1.07638554e+01, 1.49584947e-01],
[1.11493976e+01, 1.72849513e-01],
[1.18240964e+01, 2.16931625e-01],
[1.21855422e+01, 2.45546942e-01],
[1.25951807e+01, 3.48819614e-01],
[1.30771084e+01, 5.27197199e-01],
[1.36795181e+01, 8.83462949e-01],
[1.38000000e+01, 1.00000000e+00]]
)
def t():
return datetime.now()
@cache_to_disk(90)
def load_data(nsim0, simname, min_logmass):
"""
Load the reference catalogue, the cross catalogues, the merger trees and
the overlap reader (in this order).
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(simname)
if "csiborg2_" in simname:
kind = simname.split("_")[-1]
print(f"{t()}: loading {len(nsims)} halo catalogues.")
cat0 = csiborgtools.read.CSiBORG2Catalogue(nsim0, 99, kind)
catxs = [csiborgtools.read.CSiBORG2Catalogue(n, 99, kind)
for n in nsims if n != nsim0]
print(f"{t()}: loading {len(nsims)} merger trees.")
merger_trees = {}
for nsim in tqdm(nsims):
merger_trees[nsim] = csiborgtools.read.CSiBORG2MergerTreeReader(
nsim, kind)
else:
raise ValueError(f"Unknown simname: {simname}")
overlaps = csiborgtools.summary.NPairsOverlap(cat0, catxs, min_logmass)
return cat0, catxs, merger_trees, overlaps
def extract_main_progenitor_maxoverlap(group_nr, overlaps, merger_trees):
"""
Follow the main progenitor of a reference group and its maximum overlap
group in the cross catalogues.
"""
min_overlap = 0
# NOTE these can be all cached in the overlap object.
max_overlaps = overlaps.max_overlap(0, True)[group_nr]
if np.sum(max_overlaps > 0) == 0:
raise ValueError(f"No overlaps for group {group_nr}.")
max_overlap_indxs = overlaps.max_overlap_key(
"index", min_overlap, True)[group_nr]
out = {}
for i in trange(len(overlaps), desc="Cross main progenitors"):
nsimx = overlaps[i].catx().nsim
group_nr_cross = max_overlap_indxs[i]
if np.isnan(group_nr_cross):
continue
x = merger_trees[nsimx].main_progenitor(int(group_nr_cross))
x["Overlap"] = max_overlaps[i]
out[nsimx] = x
nsim0 = overlaps.cat0().nsim
print(f"Appending main progenitor for {nsim0}.")
out[nsim0] = merger_trees[nsim0].main_progenitor(group_nr)
return out
def summarize_extracted_mah(simname, data, nsim0, nsimxs, key,
min_age=0, include_nsim0=True):
"""
Turn the dictionaries of extracted MAHs into a single array.
"""
if "csiborg2_" in simname:
nsnap = 100
else:
raise ValueError(f"Unknown simname: {simname}")
X = []
for nsimx in nsimxs + [nsim0] if include_nsim0 else nsimxs:
try:
d = data[nsimx]
except KeyError:
continue
x = np.full(nsnap, np.nan, dtype=np.float32)
x[d["SnapNum"]] = d[key]
X.append(x)
cosmo = FlatLambdaCDM(H0=67.76, Om0=csiborgtools.simname2Omega_m(simname))
zs = [csiborgtools.snap2redshift(i, simname) for i in range(nsnap)]
age = cosmo.age(zs).value
mask = age > min_age
return age[mask], np.vstack(X)[:, mask]
def extract_mah(simname, logmass_bounds, key, min_age=0):
"""
Extract the random MAHs for a given simulation and mass range and key.
Keys are for example: "MainProgenitorMass" or "GroupMass"
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(simname)
X = []
for i, nsim in enumerate(nsims):
with File(paths.random_mah(simname, nsim), 'r') as f:
mah = f[key][:]
final_mass = mah[:, -1]
# Select the mass range
mask = final_mass >= 10**logmass_bounds[0]
mask &= final_mass < 10**logmass_bounds[1]
X.append(mah[mask])
if i == 0:
redshift = f["Redshift"][:]
X = np.vstack(X)
cosmo = FlatLambdaCDM(H0=67.76, Om0=csiborgtools.simname2Omega_m(simname))
age = cosmo.age(redshift).value
mask = age > min_age
return age[mask], X[:, mask]
def extract_mah_mdpl2(logmass_bounds, min_age=1.5):
"""
MAH extraction for the MDPL2 simulation. Data comes from
`https://arxiv.org/abs/2105.05859`
"""
fdir = "/mnt/extraspace/rstiskalek/catalogs/"
age = np.genfromtxt(join(fdir, "mdpl2_cosmic_time.txt"))
with File(join(fdir, "diffmah_mdpl2.h5"), 'r') as f:
log_mp = f["logmp_sim"][:]
log_mah_sim = f["log_mah_sim"][...]
xmin, xmax = logmass_bounds
ks = np.where((log_mp > xmin) & (log_mp < xmax))[0]
X = 10**log_mah_sim[ks]
mask = age > min_age
return age[mask], X[:, mask]