mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-07 17:04:15 +00:00
194 lines
7.8 KiB
Python
194 lines
7.8 KiB
Python
# Copyright (C) 2024 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""Script to help with plots in `flow_calibration.ipynb`."""
|
|
from copy import copy
|
|
from os.path import join, exists
|
|
|
|
import numpy as np
|
|
from getdist import MCSamples
|
|
from h5py import File
|
|
|
|
import csiborgtools
|
|
|
|
|
|
def read_samples(catalogue, simname, ksmooth, include_calibration=False,
|
|
return_MCsamples=False, subtract_LG_velocity=-1):
|
|
print(f"\nReading {catalogue} fitted to {simname} with ksmooth = {ksmooth}.", flush=True) # noqa
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsims = paths.get_ics(simname)
|
|
|
|
# The last simulation was used to draw the mocks.
|
|
if catalogue in ["CB2_small", "CB2_large"]:
|
|
nsims = nsims[:-5]
|
|
|
|
FDIR_LG = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/observer" # noqa
|
|
|
|
Vx, Vy, Vz, beta, sigma_v, alpha = [], [], [], [], [], []
|
|
BIC, AIC, logZ, chi2 = [], [], [], []
|
|
|
|
if catalogue in ["LOSS", "Foundation"] or "Pantheon+" in catalogue:
|
|
alpha_cal, beta_cal, mag_cal, e_mu_intrinsic = [], [], [], []
|
|
elif catalogue in ["2MTF", "SFI_gals", "SFI_gals_masked"]:
|
|
a, b, e_mu_intrinsic = [], [], []
|
|
elif catalogue == "SFI_groups":
|
|
h = []
|
|
elif catalogue in ["CB2_small", "CB2_large"]:
|
|
pass
|
|
else:
|
|
raise ValueError(f"Catalogue {catalogue} not recognized.")
|
|
|
|
fname = f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_{catalogue}_{simname}_smooth_{ksmooth}.hdf5" # noqa
|
|
with File(fname, 'r') as f:
|
|
for i, nsim in enumerate(nsims):
|
|
Vx.append(f[f"sim_{nsim}/Vext_x"][:])
|
|
Vy.append(f[f"sim_{nsim}/Vext_y"][:])
|
|
Vz.append(f[f"sim_{nsim}/Vext_z"][:])
|
|
|
|
alpha.append(f[f"sim_{nsim}/alpha"][:])
|
|
beta.append(f[f"sim_{nsim}/beta"][:])
|
|
sigma_v.append(f[f"sim_{nsim}/sigma_v"][:])
|
|
|
|
if subtract_LG_velocity >= 0:
|
|
fname = join(FDIR_LG, f"{simname}_{nsim}_observer_velocity.npz") # noqa
|
|
if not exists(fname):
|
|
raise FileNotFoundError(f"File {fname} not found.")
|
|
d = np.load(fname)
|
|
R = d["smooth_scales"][subtract_LG_velocity]
|
|
if i == 0:
|
|
print(f"Subtracting LG velocity with kernel {R} Mpc / h.", flush=True) # noqa
|
|
Vx_LG, Vy_LG, Vz_LG = d["vobs"][subtract_LG_velocity]
|
|
if simname == "Carrick2015":
|
|
Vx[-1] += beta[-1] * Vx_LG
|
|
Vy[-1] += beta[-1] * Vy_LG
|
|
Vz[-1] += beta[-1] * Vz_LG
|
|
else:
|
|
Vx[-1] += Vx_LG
|
|
Vy[-1] += Vy_LG
|
|
Vz[-1] += Vz_LG
|
|
|
|
BIC.append(f[f"sim_{nsim}/BIC"][...])
|
|
AIC.append(f[f"sim_{nsim}/AIC"][...])
|
|
logZ.append(f[f"sim_{nsim}/logZ"][...])
|
|
try:
|
|
chi2.append(f[f"sim_{nsim}/chi2"][...])
|
|
except KeyError:
|
|
chi2.append([0.])
|
|
|
|
if catalogue in ["LOSS", "Foundation"] or "Pantheon+" in catalogue: # noqa
|
|
alpha_cal.append(f[f"sim_{nsim}/alpha_cal"][:])
|
|
beta_cal.append(f[f"sim_{nsim}/beta_cal"][:])
|
|
mag_cal.append(f[f"sim_{nsim}/mag_cal"][:])
|
|
e_mu_intrinsic.append(f[f"sim_{nsim}/e_mu_intrinsic"][:])
|
|
elif catalogue in ["2MTF", "SFI_gals"]:
|
|
a.append(f[f"sim_{nsim}/a"][:])
|
|
b.append(f[f"sim_{nsim}/b"][:])
|
|
e_mu_intrinsic.append(f[f"sim_{nsim}/e_mu_intrinsic"][:])
|
|
elif catalogue == "SFI_groups":
|
|
h.append(f[f"sim_{nsim}/h"][:])
|
|
elif catalogue in ["CB2_small", "CB2_large"]:
|
|
pass
|
|
else:
|
|
raise ValueError(f"Catalogue {catalogue} not recognized.")
|
|
|
|
Vx, Vy, Vz, alpha, beta, sigma_v = np.hstack(Vx), np.hstack(Vy), np.hstack(Vz), np.hstack(alpha), np.hstack(beta), np.hstack(sigma_v) # noqa
|
|
|
|
gof = np.hstack(BIC), np.hstack(AIC), np.hstack(logZ), np.hstack(chi2)
|
|
|
|
if catalogue in ["LOSS", "Foundation"] or "Pantheon+" in catalogue:
|
|
alpha_cal, beta_cal, mag_cal, e_mu_intrinsic = np.hstack(alpha_cal), np.hstack(beta_cal), np.hstack(mag_cal), np.hstack(e_mu_intrinsic) # noqa
|
|
elif catalogue in ["2MTF", "SFI_gals", "SFI_gals_masked"]:
|
|
a, b, e_mu_intrinsic = np.hstack(a), np.hstack(b), np.hstack(e_mu_intrinsic) # noqa
|
|
elif catalogue == "SFI_groups":
|
|
h = np.hstack(h)
|
|
elif catalogue in ["CB2_small", "CB2_large"]:
|
|
pass
|
|
else:
|
|
raise ValueError(f"Catalogue {catalogue} not recognized.")
|
|
|
|
# Calculate magnitude of V_ext
|
|
|
|
Vmag = np.sqrt(Vx**2 + Vy**2 + Vz**2)
|
|
# Calculate direction in galactic coordinates of V_ext
|
|
V = np.vstack([Vx, Vy, Vz]).T
|
|
V = csiborgtools.cartesian_to_radec(V)
|
|
l, b = csiborgtools.radec_to_galactic(V[:, 1], V[:, 2])
|
|
|
|
data = [alpha, beta, Vmag, l, b, sigma_v]
|
|
names = ["alpha", "beta", "Vmag", "l", "b", "sigma_v"]
|
|
|
|
if include_calibration:
|
|
if catalogue in ["LOSS", "Foundation"] or "Pantheon+" in catalogue:
|
|
data += [alpha_cal, beta_cal, mag_cal, e_mu_intrinsic]
|
|
names += ["alpha_cal", "beta_cal", "mag_cal", "e_mu_intrinsic"]
|
|
elif catalogue in ["2MTF", "SFI_gals", "SFI_gals_masked"]:
|
|
data += [a, b, e_mu_intrinsic]
|
|
names += ["a", "b", "e_mu_intrinsic"]
|
|
elif catalogue == "SFI_groups":
|
|
data += [h]
|
|
names += ["h"]
|
|
else:
|
|
raise ValueError(f"Catalogue {catalogue} not recognized.")
|
|
|
|
print("BIC = {:4f} +- {:4f}".format(np.mean(gof[0]), np.std(gof[0])))
|
|
print("AIC = {:4f} +- {:4f}".format(np.mean(gof[1]), np.std(gof[1])))
|
|
print("logZ = {:4f} +- {:4f}".format(np.mean(gof[2]), np.std(gof[2])))
|
|
print("chi2 = {:4f} +- {:4f}".format(np.mean(gof[3]), np.std(gof[3])))
|
|
|
|
data = np.vstack(data).T
|
|
|
|
if return_MCsamples:
|
|
simname = simname_to_pretty(simname)
|
|
if ksmooth == 1:
|
|
simname = fr"{simname} (2)"
|
|
|
|
if subtract_LG_velocity >= 0:
|
|
simname += " (LG)"
|
|
|
|
label = fr"{catalogue}, {simname}, $\log \mathcal{{Z}} = {np.mean(gof[2]):.1f}$" # noqa
|
|
|
|
return MCSamples(samples=data, names=names,
|
|
labels=names_to_latex(names), label=label)
|
|
|
|
return data, names, gof
|
|
|
|
|
|
def simname_to_pretty(simname):
|
|
ltx = {"Carrick2015": "C+15",
|
|
"csiborg1": "CB1",
|
|
"csiborg2_main": "CB2",
|
|
}
|
|
return ltx[simname] if simname in ltx else simname
|
|
|
|
|
|
def names_to_latex(names, for_corner=False):
|
|
ltx = {"alpha": "\\alpha",
|
|
"beta": "\\beta",
|
|
"Vmag": "V_{\\rm ext} ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"sigma_v": "\\sigma_v ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
}
|
|
|
|
ltx_corner = {"alpha": r"$\alpha$",
|
|
"beta": r"$\beta$",
|
|
"Vmag": r"$V_{\rm ext}$",
|
|
"sigma_v": r"$\sigma_v$",
|
|
"h": r"$h$",
|
|
}
|
|
|
|
labels = copy(names)
|
|
for i, label in enumerate(names):
|
|
if label in ltx:
|
|
labels[i] = ltx_corner[label] if for_corner else ltx[label]
|
|
|
|
return labels
|