mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-04-17 19:50:55 +00:00
* Add iterative density field generation * Edit particle halfwidth selection * Update import * Remove old file * Add position wrapping * Add RSD support * Add density field calculation * Edit paths to the density field * Flip argument order * Edit documentation * Edit docs * update nb
383 lines
11 KiB
Python
383 lines
11 KiB
Python
# Copyright (C) 2022 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Various coordinate transformations.
|
|
"""
|
|
from os.path import isfile
|
|
|
|
import numpy
|
|
from h5py import File
|
|
|
|
###############################################################################
|
|
# Coordinate transforms #
|
|
###############################################################################
|
|
|
|
|
|
def cartesian_to_radec(X, indeg=True):
|
|
"""
|
|
Calculate the radial distance, RA, dec from Cartesian coordinates. Note,
|
|
RA is in range [0, 360) degrees and dec in range [-90, 90] degrees.
|
|
|
|
Parameters
|
|
----------
|
|
X : 2-dimensional array `(nsamples, 3)`
|
|
Cartesian coordinates.
|
|
indeg : bool, optional
|
|
Whether to return RA and DEC in degrees.
|
|
|
|
Returns
|
|
-------
|
|
out : 2-dimensional array `(nsamples, 3)`
|
|
Radial distance, RA and dec.
|
|
"""
|
|
x, y, z = X[:, 0], X[:, 1], X[:, 2]
|
|
dist = numpy.linalg.norm(X, axis=1)
|
|
dec = numpy.arcsin(z / dist)
|
|
ra = numpy.arctan2(y, x)
|
|
ra[ra < 0] += 2 * numpy.pi # Wrap RA to [0, 2pi)
|
|
if indeg:
|
|
ra = numpy.rad2deg(ra)
|
|
dec = numpy.rad2deg(dec)
|
|
return numpy.vstack([dist, ra, dec]).T
|
|
|
|
|
|
def radec_to_cartesian(X, isdeg=True):
|
|
"""
|
|
Calculate Cartesian coordinates from radial distance, RA, dec. Note, RA is
|
|
expected in range [0, 360) degrees and dec in range [-90, 90] degrees.
|
|
|
|
Parameters
|
|
----------
|
|
X : 2-dimensional array `(nsamples, 3)`
|
|
Radial distance, RA and dec.
|
|
isdeg : bool, optional
|
|
Whether to return RA and DEC in degrees.
|
|
|
|
Returns
|
|
-------
|
|
out : 2-dimensional array `(nsamples, 3)`
|
|
Cartesian coordinates.
|
|
"""
|
|
dist, ra, dec = X[:, 0], X[:, 1], X[:, 2]
|
|
if isdeg:
|
|
ra = numpy.deg2rad(ra)
|
|
dec = numpy.deg2rad(dec)
|
|
x = numpy.cos(dec) * numpy.cos(ra)
|
|
y = numpy.cos(dec) * numpy.sin(ra)
|
|
z = numpy.sin(dec)
|
|
return dist * numpy.vstack([x, y, z]).T
|
|
|
|
|
|
def real2redshift(pos, vel, origin, box, in_box_units, periodic_wrap=True,
|
|
make_copy=True):
|
|
r"""
|
|
Convert real-space position to redshift space position.
|
|
|
|
Parameters
|
|
----------
|
|
pos : 2-dimensional array `(nsamples, 3)`
|
|
Real-space Cartesian position components.
|
|
vel : 2-dimensional array `(nsamples, 3)`
|
|
Cartesian velocity components.
|
|
origin : 1-dimensional array `(3,)`
|
|
Origin of the coordinate system in the `pos` reference frame.
|
|
box : py:class:`csiborg.read.BoxUnits`
|
|
Box units.
|
|
in_box_units: bool
|
|
Whether `pos` and `vel` are in box units. If not, position is assumed
|
|
to be in :math:`\mathrm{Mpc}`, velocity in
|
|
:math:`\mathrm{km} \mathrm{s}^{-1}` and math:`h=0.705`, or otherwise
|
|
matching the box.
|
|
periodic_wrap : bool, optional
|
|
Whether to wrap around the box, particles may be outside the default
|
|
bounds once RSD is applied.
|
|
make_copy : bool, optional
|
|
Whether to make a copy of `pos` before modifying it.
|
|
|
|
Returns
|
|
-------
|
|
pos : 2-dimensional array `(nsamples, 3)`
|
|
Redshift-space Cartesian position components, with an observer assumed
|
|
at the `origin`.
|
|
"""
|
|
a = box._aexp
|
|
H0 = box.box_H0 if in_box_units else box.H0
|
|
|
|
if make_copy:
|
|
pos = numpy.copy(pos)
|
|
for i in range(3):
|
|
pos[:, i] -= origin[i]
|
|
|
|
norm2 = numpy.sum(pos**2, axis=1)
|
|
dot = numpy.einsum("ij,ij->i", pos, vel)
|
|
pos *= (1 + a / H0 * dot / norm2).reshape(-1, 1)
|
|
|
|
for i in range(3):
|
|
pos[:, i] += origin[i]
|
|
|
|
if periodic_wrap:
|
|
boxsize = 1. if in_box_units else box.box2mpc(1.)
|
|
# Wrap around the box: x > 1 -> x - 1, x < 0 -> x + 1
|
|
pos[pos > boxsize] -= boxsize
|
|
pos[pos < 0] += boxsize
|
|
return pos
|
|
|
|
|
|
###############################################################################
|
|
# Array manipulation #
|
|
###############################################################################
|
|
|
|
|
|
def cols_to_structured(N, cols):
|
|
"""
|
|
Allocate a structured array from `cols`.
|
|
|
|
Parameters
|
|
----------
|
|
N : int
|
|
Structured array size.
|
|
cols: list of tuples
|
|
Column names and dtypes. Each tuple must written as `(name, dtype)`.
|
|
|
|
Returns
|
|
-------
|
|
out : structured array
|
|
Initialised structured array.
|
|
"""
|
|
if not isinstance(cols, list) and all(isinstance(c, tuple) for c in cols):
|
|
raise TypeError("`cols` must be a list of tuples.")
|
|
|
|
dtype = {"names": [col[0] for col in cols],
|
|
"formats": [col[1] for col in cols]}
|
|
return numpy.full(N, numpy.nan, dtype=dtype)
|
|
|
|
|
|
def add_columns(arr, X, cols):
|
|
"""
|
|
Add new columns to a record array `arr`. Creates a new array.
|
|
|
|
Parameters
|
|
----------
|
|
arr : record array
|
|
Record array to add columns to.
|
|
X : (list of) 1-dimensional array(s) or 2-dimensional array
|
|
Columns to be added.
|
|
cols : str or list of str
|
|
Column names to be added.
|
|
|
|
Returns
|
|
-------
|
|
out : record array
|
|
"""
|
|
# Make sure cols is a list of str and X a 2D array
|
|
cols = [cols] if isinstance(cols, str) else cols
|
|
if isinstance(X, numpy.ndarray) and X.ndim == 1:
|
|
X = X.reshape(-1, 1)
|
|
if isinstance(X, list) and all(x.ndim == 1 for x in X):
|
|
X = numpy.vstack([X]).T
|
|
if len(cols) != X.shape[1]:
|
|
raise ValueError("Number of columns of `X` does not match `cols`.")
|
|
if arr.size != X.shape[0]:
|
|
raise ValueError("Number of rows of `X` does not match size of `arr`.")
|
|
|
|
# Get the new data types
|
|
dtype = arr.dtype.descr
|
|
for i, col in enumerate(cols):
|
|
dtype.append((col, X[i, :].dtype.descr[0][1]))
|
|
|
|
# Fill in the old array
|
|
out = numpy.full(arr.size, numpy.nan, dtype=dtype)
|
|
for col in arr.dtype.names:
|
|
out[col] = arr[col]
|
|
for i, col in enumerate(cols):
|
|
out[col] = X[:, i]
|
|
|
|
return out
|
|
|
|
|
|
def rm_columns(arr, cols):
|
|
"""
|
|
Remove columns `cols` from a record array `arr`. Creates a new array.
|
|
|
|
Parameters
|
|
----------
|
|
arr : record array
|
|
Record array to remove columns from.
|
|
cols : str or list of str
|
|
Column names to be removed.
|
|
|
|
Returns
|
|
-------
|
|
out : record array
|
|
"""
|
|
# Check columns we wish to delete are in the array
|
|
cols = [cols] if isinstance(cols, str) else cols
|
|
for col in cols:
|
|
if col not in arr.dtype.names:
|
|
raise ValueError("Column `{}` not in `arr`.".format(col))
|
|
|
|
# Get a new dtype without the cols to be deleted
|
|
new_dtype = []
|
|
for dtype, name in zip(arr.dtype.descr, arr.dtype.names, strict=True):
|
|
if name not in cols:
|
|
new_dtype.append(dtype)
|
|
|
|
# Allocate a new array and fill it in.
|
|
out = numpy.full(arr.size, numpy.nan, new_dtype)
|
|
for name in out.dtype.names:
|
|
out[name] = arr[name]
|
|
|
|
return out
|
|
|
|
|
|
def list_to_ndarray(arrs, cols):
|
|
"""
|
|
Convert a list of structured arrays of CSiBORG simulation catalogues to
|
|
an 3-dimensional array.
|
|
|
|
Parameters
|
|
----------
|
|
arrs : list of structured arrays
|
|
List of CSiBORG catalogues.
|
|
cols : str or list of str
|
|
Columns to be extracted from the CSiBORG catalogues.
|
|
|
|
Returns
|
|
-------
|
|
out : 3-dimensional array
|
|
Catalogue array of shape `(n_realisations, n_samples, n_cols)`, where
|
|
`n_samples` is the maximum number of samples over the CSiBORG
|
|
catalogues.
|
|
"""
|
|
if not isinstance(arrs, list):
|
|
raise TypeError("`arrs` must be a list of structured arrays.")
|
|
cols = [cols] if isinstance(cols, str) else cols
|
|
|
|
Narr = len(arrs)
|
|
Nobj_max = max([arr.size for arr in arrs])
|
|
Ncol = len(cols)
|
|
# Preallocate the array and fill it
|
|
out = numpy.full((Narr, Nobj_max, Ncol), numpy.nan)
|
|
for i in range(Narr):
|
|
Nobj = arrs[i].size
|
|
for j in range(Ncol):
|
|
out[i, :Nobj, j] = arrs[i][cols[j]]
|
|
return out
|
|
|
|
|
|
def array_to_structured(arr, cols):
|
|
"""
|
|
Create a structured array from a 2-dimensional array.
|
|
|
|
Parameters
|
|
----------
|
|
arr : 2-dimensional array
|
|
Original array of shape `(n_samples, n_cols)`.
|
|
cols : list of str
|
|
Columns of the structured array
|
|
|
|
Returns
|
|
-------
|
|
out : structured array
|
|
Output structured array.
|
|
"""
|
|
cols = [cols] if isinstance(cols, str) else cols
|
|
if arr.ndim != 2 and arr.shape[1] != len(cols):
|
|
raise TypeError("`arr` must be a 2D array `(n_samples, n_cols)`.")
|
|
|
|
dtype = {"names": cols, "formats": [arr.dtype] * len(cols)}
|
|
out = numpy.full(arr.shape[0], numpy.nan, dtype=dtype)
|
|
for i, col in enumerate(cols):
|
|
out[col] = arr[:, i]
|
|
|
|
return out
|
|
|
|
|
|
def flip_cols(arr, col1, col2):
|
|
"""
|
|
Flip values in columns `col1` and `col2`. `arr` is passed by reference and
|
|
is not explicitly returned back.
|
|
|
|
Parameters
|
|
----------
|
|
arr : structured array
|
|
Array whose columns are to be converted.
|
|
col1 : str
|
|
First column name.
|
|
col2 : str
|
|
Second column name.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
dum = numpy.copy(arr[col1])
|
|
arr[col1] = arr[col2]
|
|
arr[col2] = dum
|
|
|
|
|
|
def extract_from_structured(arr, cols):
|
|
"""
|
|
Extract columns `cols` from a structured array. The array dtype is set
|
|
to be that of the first column in `cols`.
|
|
|
|
Parameters
|
|
----------
|
|
arr : structured array
|
|
Array from which to extract columns.
|
|
cols : list of str or str
|
|
Column to extract.
|
|
|
|
Returns
|
|
-------
|
|
out : 2- or 1-dimensional array
|
|
Array with shape `(n_particles, len(cols))`. If `len(cols)` is 1
|
|
flattens the array.
|
|
"""
|
|
cols = [cols] if isinstance(cols, str) else cols
|
|
for col in cols:
|
|
if col not in arr.dtype.names:
|
|
raise ValueError(f"Invalid column `{col}`!")
|
|
# Preallocate an array and populate it
|
|
out = numpy.zeros((arr.size, len(cols)), dtype=arr[cols[0]].dtype)
|
|
for i, col in enumerate(cols):
|
|
out[:, i] = arr[col]
|
|
# Optionally flatten
|
|
if len(cols) == 1:
|
|
return out.reshape(-1, )
|
|
return out
|
|
|
|
|
|
###############################################################################
|
|
# h5py functions #
|
|
###############################################################################
|
|
|
|
|
|
def read_h5(path):
|
|
"""
|
|
Return and return and open `h5py.File` object.
|
|
|
|
Parameters
|
|
----------
|
|
path : str
|
|
Path to the file.
|
|
|
|
Returns
|
|
-------
|
|
file : `h5py.File`
|
|
"""
|
|
if not isfile(path):
|
|
raise IOError(f"File `{path}` does not exist!")
|
|
return File(path, "r")
|