mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:18:02 +00:00
56e39a8b1d
* Store indices as f32 * Fix init sorting * Organise imports * Rename pathing * Add particle loading * Improve particle reading * Add h5py reader * edit particle path * Update particles loading * update particles loading * Fix particle dumping * Add init fitting * Fix bug due to insufficient precision * Add commnet * Add comment * Add clumps catalogue to halo cat * Add comment * Make sure PIDS never forced to float32 * fix pid reading * fix pid reading * Update matching to work with new arrays * Stop using cubical sub boxes, turn off nshift if no smoothing * Improve caching * Move function definitions * Simplify calculation * Add import * Small updates to the halo * Simplify calculation * Simplify looping calculation * fix tonew * Add initial data * Add skip condition * Add unit conversion * Add loading background in batches * Rename mmain index * Switch overlaps to h5 * Add finite lagpatch check * fix column name * Add verbosity flags * Save halo IDs instead. * Switch back to npz * Delte nbs * Reduce size of the box * Load correct bckg of halos being matched * Remove verbosity * verbosity edits * Change lower thresholds
154 lines
5 KiB
Python
154 lines
5 KiB
Python
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Script to load in the simulation particles, load them by their clump ID and
|
|
dump into a HDF5 file. Stores the first and last index of each clump in the
|
|
particle array. This can be used for fast slicing of the array to acces
|
|
particles of a single clump.
|
|
"""
|
|
|
|
from datetime import datetime
|
|
from gc import collect
|
|
|
|
import h5py
|
|
import numba
|
|
import numpy
|
|
from mpi4py import MPI
|
|
from tqdm import trange
|
|
|
|
try:
|
|
import csiborgtools
|
|
except ModuleNotFoundError:
|
|
import sys
|
|
|
|
sys.path.append("../")
|
|
import csiborgtools
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
# We set up the MPI
|
|
comm = MPI.COMM_WORLD
|
|
rank = comm.Get_rank()
|
|
nproc = comm.Get_size()
|
|
|
|
# And next parse all the arguments and set up CSiBORG objects
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
|
help="IC realisations. If `-1` processes all simulations.")
|
|
args = parser.parse_args()
|
|
|
|
verbose = nproc == 1
|
|
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
|
partreader = csiborgtools.read.ParticleReader(paths)
|
|
# Keep "ID" as the last column!
|
|
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M', "ID"]
|
|
|
|
if args.ics is None or args.ics[0] == -1:
|
|
ics = paths.get_ics(tonew=False)
|
|
else:
|
|
ics = args.ics
|
|
|
|
|
|
@numba.jit(nopython=True)
|
|
def minmax_clump(clid, clump_ids, start_loop=0):
|
|
"""
|
|
Find the start and end index of a clump in a sorted array of clump IDs.
|
|
This is much faster than using `numpy.where` and then `numpy.min` and
|
|
`numpy.max`.
|
|
"""
|
|
start = None
|
|
end = None
|
|
|
|
for i in range(start_loop, clump_ids.size):
|
|
n = clump_ids[i]
|
|
if n == clid:
|
|
if start is None:
|
|
start = i
|
|
end = i
|
|
elif n > clid:
|
|
break
|
|
return start, end
|
|
|
|
|
|
# MPI loop over individual simulations. We read in the particles from RAMSES
|
|
# files and dump them to a HDF5 file.
|
|
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
|
for i in jobs:
|
|
nsim = ics[i]
|
|
nsnap = max(paths.get_snapshots(nsim))
|
|
fname = paths.particles_path(nsim)
|
|
# We first read in the clump IDs of the particles and infer the sorting.
|
|
# Right away we dump the clump IDs to a HDF5 file and clear up memory.
|
|
print(f"{datetime.now()}: rank {rank} loading particles {nsim}.",
|
|
flush=True)
|
|
part_cids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
|
sort_indxs = numpy.argsort(part_cids).astype(numpy.int32)
|
|
part_cids = part_cids[sort_indxs]
|
|
with h5py.File(fname, "w") as f:
|
|
f.create_dataset("clump_ids", data=part_cids)
|
|
f.close()
|
|
del part_cids
|
|
collect()
|
|
|
|
# Next we read in the particles and sort them by their clump ID.
|
|
# We cannot directly read this as an unstructured array because the float32
|
|
# precision is insufficient to capture the clump IDs.
|
|
parts, pids = partreader.read_particle(
|
|
nsnap, nsim, pars_extract, return_structured=False, verbose=verbose)
|
|
# Now we in two steps save the particles and particle IDs.
|
|
print(f"{datetime.now()}: rank {rank} dumping particles from {nsim}.",
|
|
flush=True)
|
|
parts = parts[sort_indxs]
|
|
pids = pids[sort_indxs]
|
|
del sort_indxs
|
|
collect()
|
|
|
|
with h5py.File(fname, "r+") as f:
|
|
f.create_dataset("particle_ids", data=pids)
|
|
f.close()
|
|
del pids
|
|
collect()
|
|
|
|
with h5py.File(fname, "r+") as f:
|
|
f.create_dataset("particles", data=parts)
|
|
f.close()
|
|
del parts
|
|
collect()
|
|
|
|
print(f"{datetime.now()}: rank {rank} creating clump mapping for {nsim}.",
|
|
flush=True)
|
|
# Load clump IDs back to memory
|
|
with h5py.File(fname, "r") as f:
|
|
part_cids = f["clump_ids"][:]
|
|
# We loop over the unique clump IDs.
|
|
unique_clump_ids = numpy.unique(part_cids)
|
|
clump_map = numpy.full((unique_clump_ids.size, 3), numpy.nan,
|
|
dtype=numpy.int32)
|
|
start_loop = 0
|
|
niters = unique_clump_ids.size
|
|
for i in trange(niters) if verbose else range(niters):
|
|
clid = unique_clump_ids[i]
|
|
k0, kf = minmax_clump(clid, part_cids, start_loop=start_loop)
|
|
clump_map[i, 0] = clid
|
|
clump_map[i, 1] = k0
|
|
clump_map[i, 2] = kf
|
|
start_loop = kf
|
|
|
|
# We save the mapping to a HDF5 file
|
|
with h5py.File(paths.particles_path(nsim), "r+") as f:
|
|
f.create_dataset("clumpmap", data=clump_map)
|
|
f.close()
|
|
|
|
del part_cids
|
|
collect()
|