csiborgtools/scripts/match_singlematch.py
Richard Stiskalek eccd8e3507
Add galaxy sampling (#88)
* Improve calculations

* Improve flags

* Add smoothed options

* Remove some old comments

* Edit little things

* Save smoothed

* Move files

* Edit imports

* Edit imports

* Renaming imports

* Renaming imports

* Sort imports

* Sort files

* Sorting

* Optionally make copies of the field

* Add quijote backup check

* Add direct field smoothing

* Shorten stupid documentation

* Shorten stupid docs

* Update conversion

* Add particles to ASCII conversion

* Add a short comment

* Add SDSS uncorrected distance

* Adjust comment

* Add FITS index to galaxies

* Remove spare space

* Remove a stupid line

* Remove blank line

* Make space separated

* Add interpolated field path

* Add field sampling

* Sort imports

* Return density in cells

* Clear out observer velocity

* Add 170817 sampling

* Fix normalization

* Update plot
2023-09-01 16:29:50 +01:00

218 lines
8.7 KiB
Python

# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
A script to calculate overlap between two IC realisations of the same
simulation.
"""
from argparse import ArgumentParser
from copy import deepcopy
from datetime import datetime
from distutils.util import strtobool
import numpy
from scipy.ndimage import gaussian_filter
import csiborgtools
def pair_match_max(nsim0, nsimx, simname, min_logmass, mult, verbose):
"""
Match a pair of simulations using the Max method.
Parameters
----------
nsim0, nsimx : int
The reference and cross simulation IC index.
simname : str
Simulation name.
min_logmass : float
Minimum log halo mass.
mult : float
Multiplicative factor for search radius.
verbose : bool
Verbosity flag.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if simname == "csiborg":
mass_kind = "fof_totpartmass"
maxdist = 155
periodic = False
bounds = {"dist": (0, maxdist), mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
nsim0, paths, bounds=bounds, load_fitted=True, load_initial=False)
catx = csiborgtools.read.CSiBORGHaloCatalogue(
nsimx, paths, bounds=bounds, load_fitted=True, load_initial=False)
elif simname == "quijote":
mass_kind = "group_mass"
maxdist = None
periodic = True
bounds = {mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
nsim0, paths, 4, bounds=bounds, load_fitted=True,
load_initial=False)
catx = csiborgtools.read.QuijoteHaloCatalogue(
nsimx, paths, 4, bounds=bounds, load_fitted=True,
load_initial=False)
else:
raise ValueError(f"Unknown simulation `{simname}`.")
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass,
maxdist=maxdist)
out = csiborgtools.match.matching_max(
cat0, catx, mass_kind, mult=mult, periodic=periodic,
overlap=reader.overlap(from_smoothed=True),
match_indxs=reader["match_indxs"], verbose=verbose)
fout = paths.match_max(simname, nsim0, nsimx, min_logmass, mult)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, **{p: out[p] for p in out.dtype.names})
def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
"""
Calculate overlaps between two simulations.
Parameters
----------
nsim0 : int
The reference simulation IC index.
nsimx : int
The cross simulation IC index.
simname : str
Simulation name.
min_logmass : float
Minimum log halo mass.
sigma : float
Smoothing scale in number of grid cells.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
smooth_kwargs = {"sigma": sigma, "mode": "constant", "cval": 0}
if simname == "csiborg":
overlapper_kwargs = {"box_size": 2048, "bckg_halfsize": 512}
mass_kind = "fof_totpartmass"
bounds = {"dist": (0, 155), mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
nsim0, paths, bounds=bounds, load_fitted=False,
with_lagpatch=True)
catx = csiborgtools.read.CSiBORGHaloCatalogue(
nsimx, paths, bounds=bounds, load_fitted=False,
with_lagpatch=True)
elif simname == "quijote":
overlapper_kwargs = {"box_size": 512, "bckg_halfsize": 256}
mass_kind = "group_mass"
bounds = {mass_kind: (10**min_logmass, None)}
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
nsim0, paths, 4, bounds=bounds, load_fitted=False,
with_lagpatch=True)
catx = csiborgtools.read.QuijoteHaloCatalogue(
nsimx, paths, 4, bounds=bounds, load_fitted=False,
with_lagpatch=True)
else:
raise ValueError(f"Unknown simulation name: `{simname}`.")
halomap0 = csiborgtools.read.read_h5(
paths.particles(nsim0, simname))["halomap"]
parts0 = csiborgtools.read.read_h5(
paths.initmatch(nsim0, simname, "particles"))["particles"]
hid2map0 = {hid: i for i, hid in enumerate(halomap0[:, 0])}
halomapx = csiborgtools.read.read_h5(
paths.particles(nsimx, simname))["halomap"]
partsx = csiborgtools.read.read_h5(
paths.initmatch(nsimx, simname, "particles"))["particles"]
hid2mapx = {hid: i for i, hid in enumerate(halomapx[:, 0])}
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
delta_bckg = overlapper.make_bckg_delta(parts0, halomap0, hid2map0, cat0,
verbose=verbose)
delta_bckg = overlapper.make_bckg_delta(partsx, halomapx, hid2mapx, catx,
delta=delta_bckg, verbose=verbose)
matcher = csiborgtools.match.RealisationsMatcher(
mass_kind=mass_kind, **overlapper_kwargs)
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx,
halomap0, halomapx, delta_bckg,
verbose=verbose)
# We want to store the halo IDs of the matches, not their array positions
# in the catalogues.
match_hids = deepcopy(match_indxs)
for i, matches in enumerate(match_indxs):
for j, match in enumerate(matches):
match_hids[i][j] = catx["index"][match]
fout = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed=False)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
ngp_overlap=ngp_overlap)
if not sigma > 0:
return
if verbose:
print(f"{datetime.now()}: smoothing the background field.", flush=True)
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
smoothed_overlap = matcher.smoothed_cross(cat0, catx, parts0, partsx,
halomap0, halomapx, delta_bckg,
match_indxs, smooth_kwargs,
verbose=verbose)
fout = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed=True)
if verbose:
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=sigma)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--kind", type=str, required=True,
choices=["overlap", "max"], help="Kind of matching.")
parser.add_argument("--nsim0", type=int, required=True,
help="Reference simulation IC index.")
parser.add_argument("--nsimx", type=int, required=True,
help="Cross simulation IC index.")
parser.add_argument("--simname", type=str, required=True,
help="Simulation name.")
parser.add_argument("--min_logmass", type=float, required=True,
help="Minimum log halo mass.")
parser.add_argument("--mult", type=float, default=5,
help="Search radius multiplier for Max's method.")
parser.add_argument("--sigma", type=float, default=0,
help="Smoothing scale in number of grid cells.")
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False, help="Verbosity flag.")
args = parser.parse_args()
if args.kind == "overlap":
pair_match(args.nsim0, args.nsimx, args.simname, args.min_logmass,
args.sigma, args.verbose)
elif args.kind == "max":
pair_match_max(args.nsim0, args.nsimx, args.simname, args.min_logmass,
args.mult, args.verbose)
else:
raise ValueError(f"Unknown matching kind: `{args.kind}`.")