mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 18:38:02 +00:00
eccd8e3507
* Improve calculations * Improve flags * Add smoothed options * Remove some old comments * Edit little things * Save smoothed * Move files * Edit imports * Edit imports * Renaming imports * Renaming imports * Sort imports * Sort files * Sorting * Optionally make copies of the field * Add quijote backup check * Add direct field smoothing * Shorten stupid documentation * Shorten stupid docs * Update conversion * Add particles to ASCII conversion * Add a short comment * Add SDSS uncorrected distance * Adjust comment * Add FITS index to galaxies * Remove spare space * Remove a stupid line * Remove blank line * Make space separated * Add interpolated field path * Add field sampling * Sort imports * Return density in cells * Clear out observer velocity * Add 170817 sampling * Fix normalization * Update plot
165 lines
5.5 KiB
Python
165 lines
5.5 KiB
Python
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Script to find the nearest neighbour of each halo in a given halo catalogue
|
|
from the remaining catalogues in the suite (CSIBORG or Quijote). The script is
|
|
MPI parallelized over the reference simulations.
|
|
"""
|
|
from argparse import ArgumentParser
|
|
from datetime import datetime
|
|
from distutils.util import strtobool
|
|
from os import remove
|
|
|
|
import numpy
|
|
import yaml
|
|
from mpi4py import MPI
|
|
from taskmaster import work_delegation
|
|
from tqdm import trange
|
|
|
|
from utils import open_catalogues
|
|
|
|
try:
|
|
import csiborgtools
|
|
except ModuleNotFoundError:
|
|
import sys
|
|
|
|
sys.path.append("../")
|
|
import csiborgtools
|
|
|
|
|
|
def find_neighbour(args, nsim, cats, paths, comm, save_kind):
|
|
"""
|
|
Find the nearest neighbour of each halo in the given catalogue.
|
|
|
|
Parameters
|
|
----------
|
|
args : argparse.Namespace
|
|
Command line arguments.
|
|
nsim : int
|
|
Simulation index.
|
|
cats : dict
|
|
Dictionary of halo catalogues. Keys are simulation indices, values are
|
|
the catalogues.
|
|
paths : csiborgtools.paths.Paths
|
|
Paths object.
|
|
comm : mpi4py.MPI.Comm
|
|
MPI communicator.
|
|
save_kind : str
|
|
Kind of data to save. Must be either `dist` or `bin_dist`.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
assert save_kind in ["dist", "bin_dist"]
|
|
ndist, cross_hindxs = csiborgtools.match.find_neighbour(nsim, cats)
|
|
mass_key = "totpartmass" if args.simname == "csiborg" else "group_mass"
|
|
cat0 = cats[nsim]
|
|
rdist = cat0.radial_distance(in_initial=False)
|
|
|
|
# Distance is saved optionally, whereas binned distance is always saved.
|
|
if save_kind == "dist":
|
|
out = {"ndist": ndist,
|
|
"cross_hindxs": cross_hindxs,
|
|
"mass": cat0[mass_key],
|
|
"ref_hindxs": cat0["index"],
|
|
"rdist": rdist}
|
|
fout = paths.cross_nearest(args.simname, args.run, "dist", nsim)
|
|
if args.verbose:
|
|
print(f"Rank {comm.Get_rank()} writing to `{fout}`.", flush=True)
|
|
numpy.savez(fout, **out)
|
|
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
reader = csiborgtools.summary.NearestNeighbourReader(
|
|
paths=paths, **csiborgtools.neighbour_kwargs)
|
|
counts = numpy.zeros((reader.nbins_radial, reader.nbins_neighbour),
|
|
dtype=numpy.float32)
|
|
counts = reader.count_neighbour(counts, ndist, rdist)
|
|
out = {"counts": counts}
|
|
fout = paths.cross_nearest(args.simname, args.run, "bin_dist", nsim)
|
|
if args.verbose:
|
|
print(f"Rank {comm.Get_rank()} writing to `{fout}`.", flush=True)
|
|
numpy.savez(fout, **out)
|
|
|
|
|
|
def collect_dist(args, paths):
|
|
"""
|
|
Collect the binned nearest neighbour distances into a single file.
|
|
|
|
Parameters
|
|
----------
|
|
args : argparse.Namespace
|
|
Command line arguments.
|
|
paths : csiborgtools.paths.Paths
|
|
Paths object.
|
|
|
|
Returns
|
|
-------
|
|
"""
|
|
fnames = paths.cross_nearest(args.simname, args.run, "bin_dist")
|
|
|
|
if args.verbose:
|
|
print("Collecting counts into a single file.", flush=True)
|
|
|
|
for i in trange(len(fnames)) if args.verbose else range(len(fnames)):
|
|
fname = fnames[i]
|
|
data = numpy.load(fname)
|
|
if i == 0:
|
|
out = data["counts"]
|
|
else:
|
|
out += data["counts"]
|
|
remove(fname)
|
|
|
|
fout = paths.cross_nearest(args.simname, args.run, "tot_counts",
|
|
nsim=0, nobs=0)
|
|
if args.verbose:
|
|
print(f"Writing the summed counts to `{fout}`.", flush=True)
|
|
numpy.savez(fout, tot_counts=out)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--run", type=str, help="Run name")
|
|
parser.add_argument("--simname", type=str, choices=["csiborg", "quijote"],
|
|
help="Simulation name")
|
|
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
|
help="Indices of simulations to cross. If `-1` processes all simulations.") # noqa
|
|
parser.add_argument("--Rmax", type=float, default=155/0.705,
|
|
help="High-resolution region radius")
|
|
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
|
default=False)
|
|
args = parser.parse_args()
|
|
with open("./match_finsnap.yml", "r") as file:
|
|
config = yaml.safe_load(file)
|
|
|
|
if args.simname == "csiborg":
|
|
save_kind = "dist"
|
|
else:
|
|
save_kind = "bin_dist"
|
|
|
|
comm = MPI.COMM_WORLD
|
|
rank = comm.Get_rank()
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
cats = open_catalogues(args, config, paths, comm)
|
|
|
|
def do_work(nsim):
|
|
return find_neighbour(args, nsim, cats, paths, comm, save_kind)
|
|
|
|
work_delegation(do_work, list(cats.keys()), comm,
|
|
master_verbose=args.verbose)
|
|
|
|
comm.Barrier()
|
|
if rank == 0:
|
|
collect_dist(args, paths)
|
|
print(f"{datetime.now()}: all finished. Quitting.")
|