mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 21:38:03 +00:00
344ff8e091
* Add imports * Refactor code * Rename fof velocities * Clean up and add Quijote * Edit docstrings * Update submission script * Fix bug * Start loading fitted properties * Edit docstrings * Update fitting for new `halo` * Update CM definition and R200c * Tune the minimum number of particles * Enforce crossing threshold & tune hypers * Fix periodiity when calculating angmom * Doc strings * Relax checkip * Minor edit * Fix old kwarg bug * Fix CSiBORG bounds * Catch warnings! * Add `mass_kind` and new boundaries
126 lines
4.5 KiB
Python
126 lines
4.5 KiB
Python
# Copyright (C) 2022 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Script to calculate the particle centre of mass, Lagrangian patch size in the
|
|
initial snapshot. The initial snapshot particles are read from the sorted
|
|
files.
|
|
"""
|
|
from argparse import ArgumentParser
|
|
from datetime import datetime
|
|
|
|
import numpy
|
|
from mpi4py import MPI
|
|
from taskmaster import work_delegation
|
|
from tqdm import tqdm
|
|
|
|
from utils import get_nsims
|
|
|
|
try:
|
|
import csiborgtools
|
|
except ModuleNotFoundError:
|
|
import sys
|
|
|
|
sys.path.append("../")
|
|
import csiborgtools
|
|
|
|
|
|
def _main(nsim, simname, verbose):
|
|
"""
|
|
Calculate the Lagrangian halo centre of mass and Lagrangian patch size in
|
|
the initial snapshot.
|
|
|
|
Parameters
|
|
----------
|
|
nsim : int
|
|
IC realisation index.
|
|
simname : str
|
|
Simulation name.
|
|
verbose : bool
|
|
Verbosity flag.
|
|
"""
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
cols = [("index", numpy.int32),
|
|
("x", numpy.float32),
|
|
("y", numpy.float32),
|
|
("z", numpy.float32),
|
|
("lagpatch_size", numpy.float32),
|
|
("lagpatch_ncells", numpy.int32),]
|
|
|
|
fname = paths.initmatch(nsim, simname, "particles")
|
|
parts = csiborgtools.read.read_h5(fname)
|
|
parts = parts['particles']
|
|
halo_map = csiborgtools.read.read_h5(paths.particles(nsim, simname))
|
|
halo_map = halo_map["halomap"]
|
|
|
|
if simname == "csiborg":
|
|
cat = csiborgtools.read.CSiBORGHaloCatalogue(
|
|
nsim, paths, bounds=None, load_fitted=False, load_initial=False)
|
|
else:
|
|
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
|
nsim, paths, nsnap=4, load_fitted=False, load_initial=False)
|
|
hid2map = {hid: i for i, hid in enumerate(halo_map[:, 0])}
|
|
|
|
# Initialise the overlapper.
|
|
if simname == "csiborg":
|
|
kwargs = {"box_size": 2048, "bckg_halfsize": 475}
|
|
else:
|
|
kwargs = {"box_size": 512, "bckg_halfsize": 256}
|
|
overlapper = csiborgtools.match.ParticleOverlap(**kwargs)
|
|
|
|
out = csiborgtools.read.cols_to_structured(len(cat), cols)
|
|
for i, hid in enumerate(tqdm(cat["index"]) if verbose else cat["index"]):
|
|
out["index"][i] = hid
|
|
part = csiborgtools.read.load_halo_particles(hid, parts, halo_map,
|
|
hid2map)
|
|
|
|
# Skip if the halo has no particles or is too small.
|
|
if part is None or part.size < 100:
|
|
continue
|
|
|
|
pos, mass = part[:, :3], part[:, 3]
|
|
# Calculate the centre of mass and the Lagrangian patch size.
|
|
cm = csiborgtools.fits.center_of_mass(pos, mass, boxsize=1.0)
|
|
distances = csiborgtools.fits.periodic_distance(pos, cm, boxsize=1.0)
|
|
out["x"][i], out["y"][i], out["z"][i] = cm
|
|
out["lagpatch_size"][i] = numpy.percentile(distances, 99)
|
|
|
|
# Calculate the number of cells with > 0 density.
|
|
delta = overlapper.make_delta(pos, mass, subbox=True)
|
|
out["lagpatch_ncells"][i] = csiborgtools.fits.delta2ncells(delta)
|
|
|
|
# Now save it
|
|
fout = paths.initmatch(nsim, simname, "fit")
|
|
if verbose:
|
|
print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True)
|
|
with open(fout, "wb") as f:
|
|
numpy.save(f, out)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--simname", type=str, default="csiborg",
|
|
choices=["csiborg", "quijote"],
|
|
help="Simulation name")
|
|
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
|
help="IC realisations. If `-1` processes all.")
|
|
args = parser.parse_args()
|
|
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsims = get_nsims(args, paths)
|
|
|
|
def main(nsim):
|
|
_main(nsim, args.simname, MPI.COMM_WORLD.Get_size() == 1)
|
|
|
|
work_delegation(main, nsims, MPI.COMM_WORLD)
|