mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-03 03:34:15 +00:00
9e4b34f579
* Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
218 lines
8.5 KiB
Python
218 lines
8.5 KiB
Python
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
A script to calculate overlap between two IC realisations of the same
|
|
simulation.
|
|
"""
|
|
from argparse import ArgumentParser
|
|
from copy import deepcopy
|
|
from datetime import datetime
|
|
from distutils.util import strtobool
|
|
|
|
import numpy
|
|
from scipy.ndimage import gaussian_filter
|
|
|
|
import csiborgtools
|
|
|
|
|
|
def pair_match_max(nsim0, nsimx, simname, min_logmass, mult, verbose):
|
|
"""
|
|
Match a pair of simulations using the Max method.
|
|
|
|
Parameters
|
|
----------
|
|
nsim0, nsimx : int
|
|
The reference and cross simulation IC index.
|
|
simname : str
|
|
Simulation name.
|
|
min_logmass : float
|
|
Minimum log halo mass.
|
|
mult : float
|
|
Multiplicative factor for search radius.
|
|
verbose : bool
|
|
Verbosity flag.
|
|
"""
|
|
if simname == "csiborg1":
|
|
maxdist = 155
|
|
periodic = False
|
|
bounds = {"dist": (0, maxdist), "totmass": (10**min_logmass, None)}
|
|
cat0 = csiborgtools.read.CSiBORG1Catalogue(nsim0, bounds=bounds)
|
|
catx = csiborgtools.read.CSiBORG1Catalogue(nsimx, bounds=bounds)
|
|
elif "csiborg2" in simname:
|
|
raise RuntimeError("CSiBORG2 currently not implemented..")
|
|
elif simname == "quijote":
|
|
maxdist = None
|
|
periodic = True
|
|
bounds = {"totmass": (10**min_logmass, None)}
|
|
cat0 = csiborgtools.read.QuijoteCatalogue(nsim0, bounds=bounds)
|
|
catx = csiborgtools.read.QuijoteHaloCatalogue(nsimx, bounds=bounds)
|
|
else:
|
|
raise ValueError(f"Unknown simulation `{simname}`.")
|
|
|
|
reader = csiborgtools.summary.PairOverlap(cat0, catx, min_logmass, maxdist)
|
|
out = csiborgtools.match.matching_max(
|
|
cat0, catx, "totmass", mult=mult, periodic=periodic,
|
|
overlap=reader.overlap(from_smoothed=True),
|
|
match_indxs=reader["match_indxs"], verbose=verbose)
|
|
|
|
fout = cat0.paths.match_max(simname, nsim0, nsimx, min_logmass, mult)
|
|
if verbose:
|
|
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
|
|
numpy.savez(fout, **{p: out[p] for p in out.dtype.names})
|
|
|
|
|
|
def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
|
"""
|
|
Calculate overlaps between two simulations.
|
|
|
|
Parameters
|
|
----------
|
|
nsim0 : int
|
|
The reference simulation IC index.
|
|
nsimx : int
|
|
The cross simulation IC index.
|
|
simname : str
|
|
Simulation name.
|
|
min_logmass : float
|
|
Minimum log halo mass.
|
|
sigma : float
|
|
Smoothing scale in number of grid cells.
|
|
verbose : bool
|
|
Verbosity flag.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
smooth_kwargs = {"sigma": sigma, "mode": "constant", "cval": 0}
|
|
bounds = {"lagpatch_radius": (0, None)}
|
|
|
|
if simname == "csiborg1":
|
|
overlapper_kwargs = {"box_size": 2048, "bckg_halfsize": 512}
|
|
bounds |= {"dist": (0, 135), "totmass": (10**min_logmass, None)}
|
|
|
|
# Reference simulation.
|
|
snap0 = csiborgtools.read.CSiBORG1Snapshot(
|
|
nsim0, 1, keep_snapshot_open=True)
|
|
cat0 = csiborgtools.read.CSiBORG1Catalogue(
|
|
nsim0, snapshot=snap0, bounds=bounds)
|
|
|
|
# Cross simulation.
|
|
snapx = csiborgtools.read.CSiBORG1Snapshot(
|
|
nsimx, 1, keep_snapshot_open=True)
|
|
catx = csiborgtools.read.CSiBORG1Catalogue(
|
|
nsimx, snapshot=snapx, bounds=bounds)
|
|
elif "csiborg2" in simname:
|
|
kind = simname.split("_")[-1]
|
|
overlapper_kwargs = {"box_size": 2048, "bckg_halfsize": 512}
|
|
bounds |= {"dist": (0, 135), "totmass": (10**min_logmass, None)}
|
|
|
|
# Reference simulation.
|
|
snap0 = csiborgtools.read.CSiBORG2Snapshot(
|
|
nsim0, 99, kind, keep_snapshot_open=True)
|
|
cat0 = csiborgtools.read.CSiBORG2Catalogue(
|
|
nsim0, 99, kind, snapshot=snap0, bounds=bounds)
|
|
|
|
# Cross simulation.
|
|
snapx = csiborgtools.read.CSiBORG2Snapshot(
|
|
nsimx, 99, kind, keep_snapshot_open=True)
|
|
catx = csiborgtools.read.CSiBORG2Catalogue(
|
|
nsimx, 99, kind, snapshot=snapx, bounds=bounds)
|
|
elif simname == "quijote":
|
|
overlapper_kwargs = {"box_size": 512, "bckg_halfsize": 256}
|
|
bounds |= {"totmass": (10**min_logmass, None)}
|
|
|
|
# Reference simulation.
|
|
snap0 = csiborgtools.read.QuijoteSnapshot(
|
|
nsim0, "ICs", keep_snapshot_open=True)
|
|
cat0 = csiborgtools.read.QuijoteCatalogue(
|
|
nsim0, snapshot=snap0, bounds=bounds)
|
|
|
|
# Cross simulation.
|
|
snapx = csiborgtools.read.QuijoteSnapshot(
|
|
nsimx, "ICs", keep_snapshot_open=True)
|
|
catx = csiborgtools.read.QuijoteCatalogue(
|
|
nsimx, snapshot=snapx, bounds=bounds)
|
|
else:
|
|
raise ValueError(f"Unknown simulation name: `{simname}`.")
|
|
|
|
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
|
|
delta_bckg = overlapper.make_bckg_delta(cat0, verbose=verbose)
|
|
delta_bckg = overlapper.make_bckg_delta(catx, delta=delta_bckg,
|
|
verbose=verbose)
|
|
|
|
matcher = csiborgtools.match.RealisationsMatcher(**overlapper_kwargs)
|
|
match_indxs, ngp_overlap = matcher.cross(cat0, catx, delta_bckg,
|
|
verbose=verbose)
|
|
|
|
# We want to store the halo IDs of the matches, not their array positions
|
|
# in the catalogues.
|
|
match_hids = deepcopy(match_indxs)
|
|
for i, matches in enumerate(match_indxs):
|
|
for j, match in enumerate(matches):
|
|
match_hids[i][j] = catx["index"][match]
|
|
|
|
fout = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed=False)
|
|
if verbose:
|
|
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
|
|
numpy.savez(fout, ref_hids=cat0["index"], match_hids=match_hids,
|
|
ngp_overlap=ngp_overlap)
|
|
|
|
if not sigma > 0:
|
|
return
|
|
|
|
if verbose:
|
|
print(f"{datetime.now()}: smoothing the background field.", flush=True)
|
|
gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs)
|
|
|
|
# We calculate the smoothed overlap for the pairs whose NGP overlap is > 0.
|
|
smoothed_overlap = matcher.smoothed_cross(cat0, catx, delta_bckg,
|
|
match_indxs, smooth_kwargs,
|
|
verbose=verbose)
|
|
|
|
fout = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed=True)
|
|
if verbose:
|
|
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
|
|
numpy.savez(fout, smoothed_overlap=smoothed_overlap, sigma=sigma)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--kind", type=str, required=True,
|
|
choices=["overlap", "max"], help="Kind of matching.")
|
|
parser.add_argument("--nsim0", type=int, required=True,
|
|
help="Reference simulation IC index.")
|
|
parser.add_argument("--nsimx", type=int, required=True,
|
|
help="Cross simulation IC index.")
|
|
parser.add_argument("--simname", type=str, required=True,
|
|
help="Simulation name.")
|
|
parser.add_argument("--min_logmass", type=float, required=True,
|
|
help="Minimum log halo mass.")
|
|
parser.add_argument("--mult", type=float, default=5,
|
|
help="Search radius multiplier for Max's method.")
|
|
parser.add_argument("--sigma", type=float, default=0,
|
|
help="Smoothing scale in number of grid cells.")
|
|
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
|
default=False, help="Verbosity flag.")
|
|
args = parser.parse_args()
|
|
|
|
if args.kind == "overlap":
|
|
pair_match(args.nsim0, args.nsimx, args.simname, args.min_logmass,
|
|
args.sigma, args.verbose)
|
|
elif args.kind == "max":
|
|
pair_match_max(args.nsim0, args.nsimx, args.simname, args.min_logmass,
|
|
args.mult, args.verbose)
|
|
else:
|
|
raise ValueError(f"Unknown matching kind: `{args.kind}`.")
|