csiborgtools/scripts/utils.py
Richard Stiskalek d32eb5c134
Data loading shortcut (#7)
* add load_processed

* update TODO
2022-11-06 10:26:24 +00:00

100 lines
3.4 KiB
Python

# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Notebook utility functions.
"""
import numpy
from os.path import join
from tqdm import trange
from astropy.cosmology import FlatLambdaCDM
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
Nsplits = 200
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/"
def load_mmain_convert(n):
srcdir = "/users/hdesmond/Mmain"
arr = csiborgtools.io.read_mmain(n, srcdir)
csiborgtools.utils.convert_mass_cols(arr, "mass_cl")
csiborgtools.utils.convert_position_cols(
arr, ["peak_x", "peak_y", "peak_z"])
csiborgtools.utils.flip_cols(arr, "peak_x", "peak_z")
d, ra, dec = csiborgtools.utils.cartesian_to_radec(arr)
arr = csiborgtools.utils.add_columns(
arr, [d, ra, dec], ["dist", "ra", "dec"])
return arr
def load_mmains(N=None, verbose=True):
ids = csiborgtools.io.get_csiborg_ids("/mnt/extraspace/hdesmond")
N = ids.size if N is None else N
if N > ids.size:
raise ValueError("`N` cannot be larger than 101.")
# If N less than num of CSiBORG, then radomly choose
if N == ids.size:
choices = numpy.arange(N)
else:
choices = numpy.random.choice(ids.size, N, replace=False)
out = [None] * N
iters = trange(N) if verbose else range(N)
for i in iters:
j = choices[i]
out[i] = load_mmain_convert(ids[j])
return out
def load_processed(Nsim, Nsnap):
simpath = csiborgtools.io.get_sim_path(Nsim)
outfname = join(
dumpdir, "ramses_out_{}_{}.npy".format(str(Nsim).zfill(5),
str(Nsnap).zfill(5)))
data = numpy.load(outfname)
# Add mmain
mmain = csiborgtools.io.read_mmain(Nsim, "/mnt/zfsusers/hdesmond/Mmain")
data = csiborgtools.io.merge_mmain_to_clumps(data, mmain)
# Cut on numbre of particles and finite m200
data = data[(data["npart"] > 100) & numpy.isfinite(data["m200"])]
# Do unit conversion
boxunits = csiborgtools.units.BoxUnits(Nsnap, simpath)
convert_cols = ["m200", "m500", "totpartmass", "mass_mmain",
"r200", "r500", "Rs", "rho0", "peak_x", "peak_y", "peak_z"]
data = csiborgtools.units.convert_from_boxunits(
data, convert_cols, boxunits)
return data
def load_planck2015(max_comdist=214):
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
fpath = ("/mnt/zfsusers/rstiskalek/csiborgtools/"
+ "data/HFI_PCCS_SZ-union_R2.08.fits")
return csiborgtools.io.read_planck2015(fpath, cosmo, max_comdist)
def load_2mpp():
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
return csiborgtools.io.read_2mpp("../data/2M++_galaxy_catalog.dat", cosmo)