mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-23 01:18:02 +00:00
f48eb6dcb0
* add radial position path * pep8 * Add basic fit profile dumping * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * Update TODO * Fix parts is None bug * Update nb
208 lines
7.7 KiB
Python
208 lines
7.7 KiB
Python
# Copyright (C) 2022 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
A script to fit halos (concentration, ...). The particle array of each CSiBORG
|
|
realisation must have been split in advance by `runsplit_halos`.
|
|
"""
|
|
from argparse import ArgumentParser
|
|
from datetime import datetime
|
|
from os.path import join
|
|
|
|
import numpy
|
|
from mpi4py import MPI
|
|
from tqdm import tqdm
|
|
|
|
try:
|
|
import csiborgtools
|
|
except ModuleNotFoundError:
|
|
import sys
|
|
|
|
sys.path.append("../")
|
|
import csiborgtools
|
|
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--kind", type=str, choices=["halos", "clumps"])
|
|
args = parser.parse_args()
|
|
|
|
|
|
# Get MPI things
|
|
comm = MPI.COMM_WORLD
|
|
rank = comm.Get_rank()
|
|
nproc = comm.Get_size()
|
|
|
|
paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)
|
|
partreader = csiborgtools.read.ParticleReader(paths)
|
|
nfwpost = csiborgtools.fits.NFWPosterior()
|
|
ftemp = join(paths.temp_dumpdir, "fit_clump_{}_{}_{}.npy")
|
|
cols_collect = [
|
|
("index", numpy.int32),
|
|
("npart", numpy.int32),
|
|
("totpartmass", numpy.float32),
|
|
("vx", numpy.float32),
|
|
("vy", numpy.float32),
|
|
("vz", numpy.float32),
|
|
("conc", numpy.float32),
|
|
("rho0", numpy.float32),
|
|
("r200c", numpy.float32),
|
|
("r500c", numpy.float32),
|
|
("m200c", numpy.float32),
|
|
("m500c", numpy.float32),
|
|
("lambda200c", numpy.float32),
|
|
("r200m", numpy.float32),
|
|
("m200m", numpy.float32),
|
|
]
|
|
|
|
|
|
def fit_clump(particles, clump_info, box):
|
|
"""
|
|
Fit an object. Can be eithe a clump or a parent halo.
|
|
"""
|
|
obj = csiborgtools.fits.Clump(particles, clump_info, box)
|
|
|
|
out = {}
|
|
out["npart"] = len(obj)
|
|
out["totpartmass"] = numpy.sum(obj["M"])
|
|
for i, v in enumerate(["vx", "vy", "vz"]):
|
|
out[v] = numpy.average(obj.vel[:, i], weights=obj["M"])
|
|
# Overdensity masses
|
|
out["r200c"], out["m200c"] = obj.spherical_overdensity_mass(200,
|
|
kind="crit")
|
|
out["r500c"], out["m500c"] = obj.spherical_overdensity_mass(500,
|
|
kind="crit")
|
|
out["r200m"], out["m200m"] = obj.spherical_overdensity_mass(200,
|
|
kind="matter")
|
|
# NFW fit
|
|
if out["npart"] > 10 and numpy.isfinite(out["r200c"]):
|
|
Rs, rho0 = nfwpost.fit(obj)
|
|
out["conc"] = Rs / out["r200c"]
|
|
out["rho0"] = rho0
|
|
# Spin within R200c
|
|
if numpy.isfinite(out["r200c"]):
|
|
out["lambda200c"] = obj.lambda_bullock(out["r200c"])
|
|
return out
|
|
|
|
|
|
def load_clump_particles(clumpid, particle_archive):
|
|
"""
|
|
Load a clump's particles from the particle archive. If it is not there, i.e
|
|
clump has no associated particles, return `None`.
|
|
"""
|
|
try:
|
|
part = particle_archive[str(clumpid)]
|
|
except KeyError:
|
|
part = None
|
|
return part
|
|
|
|
|
|
def load_parent_particles(clumpid, particle_archive, clumps_cat):
|
|
"""
|
|
Load a parent halo's particles.
|
|
"""
|
|
indxs = clumps_cat["index"][clumps_cat["parent"] == clumpid]
|
|
# We first load the particles of each clump belonging to this parent
|
|
# and then concatenate them for further analysis.
|
|
clumps = []
|
|
for ind in indxs:
|
|
parts = load_clump_particles(ind, particle_archive)
|
|
if parts is not None:
|
|
clumps.append([parts, None])
|
|
|
|
if len(clumps) == 0:
|
|
return None
|
|
return csiborgtools.match.concatenate_parts(clumps,
|
|
include_velocities=True)
|
|
|
|
|
|
# We now start looping over all simulations
|
|
for i, nsim in enumerate(paths.get_ics(tonew=False)):
|
|
if rank == 0:
|
|
print(f"{datetime.now()}: calculating {i}th simulation `{nsim}`.",
|
|
flush=True)
|
|
nsnap = max(paths.get_snapshots(nsim))
|
|
box = csiborgtools.read.BoxUnits(nsnap, nsim, paths)
|
|
|
|
# Archive of clumps, keywords are their clump IDs
|
|
particle_archive = numpy.load(paths.split_path(nsnap, nsim))
|
|
clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, maxdist=None,
|
|
minmass=None, rawdata=True,
|
|
load_fitted=False)
|
|
# We check whether we fit halos or clumps, will be indexing over different
|
|
# iterators.
|
|
if args.kind == "halos":
|
|
ismain = clumps_cat.ismain
|
|
else:
|
|
ismain = numpy.ones(len(clumps_cat), dtype=bool)
|
|
ntasks = len(clumps_cat)
|
|
# We split the clumps among the processes. Each CPU calculates a fraction
|
|
# of them and dumps the results in a structured array. Even if we are
|
|
# calculating parent halo this index runs over all clumps.
|
|
jobs = csiborgtools.fits.split_jobs(ntasks, nproc)[rank]
|
|
out = csiborgtools.read.cols_to_structured(len(jobs), cols_collect)
|
|
for i, j in enumerate(tqdm(jobs)) if nproc == 1 else enumerate(jobs):
|
|
clumpid = clumps_cat["index"][j]
|
|
out["index"][i] = clumpid
|
|
|
|
# If we are fitting halos and this clump is not a main, then continue.
|
|
if args.kind == "halos" and not ismain[j]:
|
|
continue
|
|
|
|
if args.kind == "halos":
|
|
part = load_parent_particles(clumpid, particle_archive, clumps_cat)
|
|
else:
|
|
part = load_clump_particles(clumpid, particle_archive)
|
|
|
|
# We fit the particles if there are any. If not we assign the index,
|
|
# otherwise it would be NaN converted to integers (-2147483648) and
|
|
# yield an error further down.
|
|
if part is not None:
|
|
_out = fit_clump(part, clumps_cat[j], box)
|
|
for key in _out.keys():
|
|
out[key][i] = _out[key]
|
|
|
|
fout = ftemp.format(str(nsim).zfill(5), str(nsnap).zfill(5), rank)
|
|
if nproc == 0:
|
|
print(f"{datetime.now()}: rank {rank} saving to `{fout}`.", flush=True)
|
|
numpy.save(fout, out)
|
|
# We saved this CPU's results in a temporary file. Wait now for the other
|
|
# CPUs and then collect results from the 0th rank and save them.
|
|
comm.Barrier()
|
|
|
|
if rank == 0:
|
|
print(f"{datetime.now()}: collecting results for simulation `{nsim}`.",
|
|
flush=True)
|
|
# We write to the output array. Load data from each CPU and append to
|
|
# the output array.
|
|
out = csiborgtools.read.cols_to_structured(ntasks, cols_collect)
|
|
clumpid2outpos = {indx: i
|
|
for i, indx in enumerate(clumps_cat["index"])}
|
|
for i in range(nproc):
|
|
inp = numpy.load(ftemp.format(str(nsim).zfill(5),
|
|
str(nsnap).zfill(5), i))
|
|
for j, clumpid in enumerate(inp["index"]):
|
|
k = clumpid2outpos[clumpid]
|
|
for key in inp.dtype.names:
|
|
out[key][k] = inp[key][j]
|
|
|
|
# If we were analysing main halos, then remove array indices that do
|
|
# not correspond to parent halos.
|
|
if args.kind == "halos":
|
|
out = out[ismain]
|
|
|
|
fout = paths.structfit_path(nsnap, nsim, args.kind)
|
|
print(f"Saving to `{fout}`.", flush=True)
|
|
numpy.save(fout, out)
|
|
|
|
# We now wait before moving on to another simulation.
|
|
comm.Barrier()
|