mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-05 12:24:16 +00:00
ee222cd010
* Update nb * Update script * Update script * Rename * Update script * Update script * Remove warning * Ignore minors when extracting MAH * Fix paths bug * Move notebooks * Move files * Rename and delete things * Rename file * Move file * Rename things * Remove old print statement * Add basic MAH plot * Add random MAH path * Output snapshot numbers * Add MAH random extraction * Fix redshift bug * Edit script * Add extracting random MAH * Little updates * Add CB2 redshift * Add some caching * Add diagnostic plots * Add caching * Minor updates * Update nb * Update notebook * Update script * Add Sorce randoms * Add CB2 varysmall * Update nb * Update nb * Update nb * Use catalogue HMF * Move definition of radec2galactic * Update nb * Update import * Update import * Add galatic coords to catalogues * Update nb
1233 lines
51 KiB
Python
1233 lines
51 KiB
Python
# Copyright (C) 2023 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
from os.path import join
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy
|
|
import scienceplots # noqa
|
|
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
|
from scipy.stats import kendalltau
|
|
from tqdm import tqdm, trange
|
|
|
|
import csiborgtools
|
|
import plt_utils
|
|
|
|
MASS_KINDS = {"csiborg": "fof_totpartmass",
|
|
"quijote": "group_mass",
|
|
}
|
|
|
|
|
|
def open_cat(nsim, simname):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
|
|
if simname == "csiborg":
|
|
bounds = {"dist": (0, 155)}
|
|
cat = csiborgtools.read.CSiBORGHaloCatalogue(
|
|
nsim, paths, bounds=bounds)
|
|
elif simname == "quijote":
|
|
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
|
nsim, paths, nsnap=4, load_fitted=True, load_initial=True,
|
|
with_lagpatch=False)
|
|
else:
|
|
raise ValueError(f"Unknown simulation name: {simname}.")
|
|
|
|
return cat
|
|
|
|
|
|
def open_cats(nsims, simname):
|
|
catxs = [None] * len(nsims)
|
|
|
|
for i, nsim in enumerate(tqdm(nsims, desc="Opening catalogues")):
|
|
catxs[i] = open_cat(nsim, simname)
|
|
|
|
return catxs
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_overlap_summary(nsim0, simname, min_logmass, smoothed):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
min_logmass, smoothed=smoothed)
|
|
cat0 = open_cat(nsim0, simname)
|
|
catxs = open_cats(nsimxs, simname)
|
|
|
|
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
|
|
min_logmass)
|
|
mass0 = reader.cat0(MASS_KINDS[simname])
|
|
mask = mass0 > 10**min_logmass
|
|
|
|
return {"mass0": mass0[mask],
|
|
"hid0": reader.cat0("index")[mask],
|
|
"summed_overlap": reader.summed_overlap(smoothed)[mask],
|
|
"max_overlap": reader.max_overlap(0, smoothed)[mask],
|
|
"prob_nomatch": reader.prob_nomatch(smoothed)[mask],
|
|
}
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_expected_mass(nsim0, simname, min_overlap, min_logmass, smoothed):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
min_logmass, smoothed=True)[:3]
|
|
|
|
cat0 = open_cat(nsim0, simname)
|
|
catxs = open_cats(nsimxs, simname)
|
|
|
|
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
|
|
min_logmass)
|
|
mass0 = reader.cat0(MASS_KINDS[simname])
|
|
mask = mass0 > 10**min_logmass
|
|
mu, std = reader.counterpart_mass(
|
|
from_smoothed=True, overlap_threshold=min_overlap, return_full=False)
|
|
|
|
return {"mass0": mass0[mask],
|
|
"mu": mu[mask],
|
|
"std": std[mask],
|
|
"prob_nomatch": reader.prob_nomatch(smoothed)[mask],
|
|
}
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs pair overlaps #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_mtot_vs_all_pairoverlap(nsim0, simname, mass_kind, min_logmass,
|
|
smoothed, nbins):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
min_logmass, smoothed=smoothed)
|
|
nsimxs = nsimxs
|
|
|
|
cat0 = open_cat(nsim0, simname)
|
|
catxs = open_cats(nsimxs, simname)
|
|
|
|
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
|
|
min_logmass)
|
|
|
|
x = [None] * len(catxs)
|
|
y = [None] * len(catxs)
|
|
for i in trange(len(catxs), desc="Stacking catalogues"):
|
|
x[i] = numpy.log10(
|
|
numpy.concatenate(reader[i].copy_per_match(mass_kind)))
|
|
y[i] = numpy.concatenate(reader[i].overlap(smoothed))
|
|
|
|
x = numpy.concatenate(x)
|
|
y = numpy.concatenate(y)
|
|
|
|
xbins = numpy.linspace(min(x), max(x), nbins)
|
|
|
|
return x, y, xbins
|
|
|
|
|
|
def mtot_vs_all_pairoverlap(nsim0, simname, min_logmass, smoothed, nbins,
|
|
ext="png"):
|
|
mass_kind = MASS_KINDS[simname]
|
|
x, y, xbins = get_mtot_vs_all_pairoverlap(nsim0, simname, mass_kind,
|
|
min_logmass, smoothed, nbins)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
plt.figure()
|
|
hb = plt.hexbin(x, y, mincnt=1, gridsize=50, bins="log")
|
|
|
|
y_median, yerr = plt_utils.compute_error_bars(x, y, xbins, sigma=2)
|
|
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3,
|
|
label="CSiBORG" if simname == "csiborg" else None)
|
|
|
|
if simname == "csiborg":
|
|
x_quijote, y_quijote, xbins_quijote = get_mtot_vs_all_pairoverlap(
|
|
0, "quijote", "group_mass", min_logmass, smoothed, nbins)
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
x_quijote, y_quijote, xbins_quijote, sigma=2)
|
|
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
|
|
y_median_quijote, yerr=yerr_quijote,
|
|
color='blue', ls='dashed', capsize=3,
|
|
label="Quijote")
|
|
plt.legend(ncol=2, fontsize="small")
|
|
|
|
plt.colorbar(hb, label="Counts in bins")
|
|
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
plt.ylabel("Pair overlap")
|
|
plt.xlim(numpy.min(x))
|
|
plt.ylim(0., 1.)
|
|
|
|
plt.tight_layout()
|
|
fout = join(plt_utils.fout,
|
|
f"mass_vs_pair_overlap_{simname}_{nsim0}.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs maximum pair overlaps #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass,
|
|
smoothed, nbins):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
min_logmass, smoothed=smoothed)
|
|
cat0 = open_cat(nsim0, simname)
|
|
catxs = open_cats(nsimxs, simname)
|
|
|
|
def get_max(y_):
|
|
if len(y_) == 0:
|
|
return 0
|
|
return numpy.nanmax(y_)
|
|
|
|
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
|
|
min_logmass)
|
|
|
|
x = [None] * len(catxs)
|
|
y = [None] * len(catxs)
|
|
for i in trange(len(catxs), desc="Stacking catalogues"):
|
|
x[i] = numpy.log10(cat0[mass_kind])
|
|
y[i] = numpy.array([get_max(y_) for y_ in reader[i].overlap(smoothed)])
|
|
|
|
mask = x[i] > min_logmass
|
|
x[i] = x[i][mask]
|
|
y[i] = y[i][mask]
|
|
|
|
x = numpy.concatenate(x)
|
|
y = numpy.concatenate(y)
|
|
|
|
xbins = numpy.linspace(min(x), max(x), nbins)
|
|
|
|
return x, y, xbins
|
|
|
|
|
|
def mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass, smoothed,
|
|
nbins, ext="png"):
|
|
x, y, xbins = get_mtot_vs_maxpairoverlap(nsim0, simname, mass_kind,
|
|
min_logmass, smoothed, nbins)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
plt.figure()
|
|
plt.hexbin(x, y, mincnt=1, gridsize=50, bins="log")
|
|
|
|
y_median, yerr = plt_utils.compute_error_bars(x, y, xbins, sigma=2)
|
|
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3,
|
|
label="CSiBORG" if simname == "csiborg" else None)
|
|
|
|
if simname == "csiborg":
|
|
x_quijote, y_quijote, xbins_quijote = get_mtot_vs_all_pairoverlap(
|
|
0, "quijote", "group_mass", min_logmass, smoothed, nbins)
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
x_quijote, y_quijote, xbins_quijote, sigma=2)
|
|
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
|
|
y_median_quijote, yerr=yerr_quijote,
|
|
color='blue', ls='dashed', capsize=3,
|
|
label="Quijote")
|
|
plt.legend(ncol=2, fontsize="small")
|
|
|
|
plt.colorbar(label="Counts in bins")
|
|
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
plt.ylabel("Maximum pair overlap")
|
|
plt.ylim(-0.02, 1.)
|
|
plt.xlim(numpy.min(x) - 0.05)
|
|
|
|
plt.tight_layout()
|
|
fout = join(plt_utils.fout, f"mass_vs_max_pair_overlap{nsim0}.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs maximum pair overlap consistency #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
@cache_to_disk(120)
|
|
def get_mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind,
|
|
min_logmass, smoothed):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
min_logmass, smoothed=smoothed)
|
|
cat0 = open_cat(nsim0, simname)
|
|
catxs = open_cats(nsimxs, simname)
|
|
|
|
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
|
|
min_logmass)
|
|
|
|
x = numpy.log10(cat0[mass_kind])
|
|
mask = x > min_logmass
|
|
x = x[mask]
|
|
nhalos = len(x)
|
|
|
|
y = numpy.full((len(catxs), nhalos), numpy.nan)
|
|
for i in trange(len(catxs), desc="Stacking catalogues"):
|
|
overlaps = reader[i].overlap(smoothed)
|
|
for j in range(nhalos):
|
|
# if len(overlaps[j]) > 0:
|
|
y[i, j] = numpy.sum(overlaps[j])
|
|
|
|
return x, y
|
|
|
|
|
|
def mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind, min_logmass,
|
|
smoothed, ext="png"):
|
|
left_edges = numpy.arange(min_logmass, 15, 0.1)
|
|
# delete_disk_caches_for_function("get_mtot_vs_maxpairoverlap_consistency")
|
|
x, y0 = get_mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind,
|
|
min_logmass, smoothed)
|
|
nsims, nhalos = y0.shape
|
|
x_2, y0_2 = get_mtot_vs_maxpairoverlap_consistency(
|
|
0, "quijote", "group_mass", min_logmass, smoothed)
|
|
nsims2, nhalos = y0_2.shape
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
plt.figure()
|
|
|
|
yplot = numpy.full(len(left_edges), numpy.nan)
|
|
yplot_2 = numpy.full(len(left_edges), numpy.nan)
|
|
|
|
for ymin in [0.3]:
|
|
|
|
y = numpy.sum(y0 > ymin, axis=0) / nsims
|
|
y_2 = numpy.sum(y0_2 > ymin, axis=0) / nsims2
|
|
|
|
for i, left_edge in enumerate(left_edges):
|
|
mask = x > left_edge
|
|
yplot[i] = numpy.mean(y[mask]) #/ nsims
|
|
mask = x_2 > left_edge
|
|
yplot_2[i] = numpy.mean(y_2[mask]) #/ nsims
|
|
|
|
plt.plot(left_edges, yplot, label="CSiBORG")
|
|
plt.plot(left_edges, yplot_2, label="Quijote")
|
|
plt.legend()
|
|
# y2 = numpy.concatenate(y0)
|
|
# y2 = y2[y2 > 0]
|
|
# m = y0 > 0
|
|
# plt.hist(y0[m], bins=30, density=True, histtype="step")
|
|
# m = y0_2 > 0
|
|
# plt.hist(y0_2[m], bins=30, density=True, histtype="step")
|
|
# plt.yscale("log")
|
|
|
|
|
|
plt.tight_layout()
|
|
fout = join(
|
|
plt_utils.fout,
|
|
f"mass_vs_max_pair_overlap_consistency_{simname}_{nsim0}.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs summed pair overlaps #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
def mtot_vs_summedpairoverlap(nsim0, simname, min_logmass, smoothed, nbins,
|
|
ext="png"):
|
|
x = get_overlap_summary(nsim0, simname, min_logmass, smoothed)
|
|
|
|
mass0 = numpy.log10(x["mass0"])
|
|
mean_overlap = numpy.nanmean(x["summed_overlap"], axis=1)
|
|
std_overlap = numpy.nanstd(x["summed_overlap"], axis=1)
|
|
mean_prob_nomatch = numpy.nanmean(x["prob_nomatch"], axis=1)
|
|
|
|
xbins = numpy.linspace(numpy.nanmin(mass0), numpy.nanmax(mass0), nbins)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
im1 = axs[0].hexbin(mass0, mean_overlap, mincnt=1, bins="log",
|
|
gridsize=30)
|
|
|
|
y_median, yerr = plt_utils.compute_error_bars(
|
|
mass0, mean_overlap, xbins, sigma=2)
|
|
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
im2 = axs[1].hexbin(mass0, std_overlap, mincnt=1, bins="log",
|
|
gridsize=30)
|
|
|
|
y_median, yerr = plt_utils.compute_error_bars(
|
|
mass0, std_overlap, xbins, sigma=2)
|
|
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
if simname == "csiborg":
|
|
x_quijote = get_overlap_summary(0, "quijote", min_logmass,
|
|
smoothed)
|
|
mass0_quijote = numpy.log10(x_quijote["mass0"])
|
|
mean_overlap_quijote = numpy.nanmean(x_quijote["summed_overlap"],
|
|
axis=1)
|
|
std_overlap_quijote = numpy.nanstd(x_quijote["summed_overlap"],
|
|
axis=1)
|
|
xbins_quijote = numpy.linspace(numpy.nanmin(mass0),
|
|
numpy.nanmax(mass0), nbins)
|
|
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
mass0_quijote, mean_overlap_quijote, xbins_quijote, sigma=2)
|
|
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
|
|
y_median_quijote, yerr=yerr_quijote,
|
|
color='blue', ls='dashed', capsize=3)
|
|
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
mass0_quijote, std_overlap_quijote, xbins_quijote, sigma=2)
|
|
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
|
|
y_median_quijote, yerr=yerr_quijote,
|
|
color='blue', ls='dashed', capsize=3)
|
|
|
|
im3 = axs[2].scatter(1 - mean_overlap, mean_prob_nomatch, c=mass0,
|
|
s=2, rasterized=True)
|
|
|
|
t = numpy.linspace(numpy.nanmin(1 - mean_overlap), 1, 100)
|
|
axs[2].plot(t, t, color="red", linestyle="--")
|
|
|
|
axs[0].set_ylim(0., 0.75)
|
|
axs[0].set_xlim(numpy.min(mass0))
|
|
axs[0].set_xlim(numpy.min(mass0))
|
|
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[0].set_ylabel("Mean summed overlap")
|
|
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_ylabel("Uncertainty of summed overlap")
|
|
axs[2].set_xlabel(r"$1 - $ mean summed overlap")
|
|
axs[2].set_ylabel("Mean prob. of no match")
|
|
|
|
label = ["Bin counts", "Bin counts",
|
|
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
|
|
ims = [im1, im2, im3]
|
|
for i in range(3):
|
|
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
|
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
label=label[i])
|
|
axins.xaxis.tick_top()
|
|
axins.xaxis.set_tick_params(labeltop=True)
|
|
axins.xaxis.set_label_position("top")
|
|
|
|
fig.tight_layout()
|
|
fout = join(plt_utils.fout, f"overlap_stat_{simname}_{nsim0}.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs mean maximum overlap #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
def mtot_vs_mean_max_overlap(nsim0, simname, min_logmass, smoothed, nbins):
|
|
x = get_overlap_summary(nsim0, simname, min_logmass, smoothed)
|
|
|
|
mass0 = numpy.log10(x["mass0"])
|
|
max_overlap = x["max_overlap"]
|
|
|
|
xbins = numpy.linspace(numpy.nanmin(mass0), numpy.nanmax(mass0), nbins)
|
|
|
|
mean_max_overlap = numpy.nanmean(max_overlap, axis=1)
|
|
std_max_overlap = numpy.nanstd(max_overlap, axis=1)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
|
|
im1 = axs[0].hexbin(mass0, mean_max_overlap, gridsize=30, mincnt=1,
|
|
bins="log")
|
|
y_median, yerr = plt_utils.compute_error_bars(
|
|
mass0, mean_max_overlap, xbins, sigma=2)
|
|
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3,
|
|
label="CSiBORG" if simname == "csiborg" else None)
|
|
|
|
im2 = axs[1].hexbin(mass0, std_max_overlap, gridsize=30, mincnt=1,
|
|
bins="log")
|
|
y_median, yerr = plt_utils.compute_error_bars(
|
|
mass0, std_max_overlap, xbins, sigma=2)
|
|
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
if simname == "csiborg":
|
|
x_quijote = get_overlap_summary(0, "quijote", min_logmass,
|
|
smoothed)
|
|
mass0_quijote = numpy.log10(x_quijote["mass0"])
|
|
max_overlap_quijote = x_quijote["max_overlap"]
|
|
|
|
xbins_quijote = numpy.linspace(numpy.nanmin(mass0_quijote),
|
|
numpy.nanmax(mass0_quijote), nbins)
|
|
mean_max_overlap_quijote = numpy.nanmean(max_overlap_quijote,
|
|
axis=1)
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
mass0_quijote, mean_max_overlap_quijote, xbins_quijote,
|
|
sigma=2)
|
|
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
|
|
y_median_quijote, yerr=yerr_quijote,
|
|
color='blue', ls='dashed', capsize=3,
|
|
label="Quijote")
|
|
|
|
std_max_overlap_quijote = numpy.nanstd(max_overlap_quijote,
|
|
axis=1)
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
mass0_quijote, std_max_overlap_quijote, xbins_quijote,
|
|
sigma=2)
|
|
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
|
|
y_median_quijote, yerr=yerr_quijote,
|
|
color='blue', ls='dashed', capsize=3)
|
|
|
|
axs[0].legend(fontsize="small")
|
|
|
|
im3 = axs[2].hexbin(numpy.nanmean(max_overlap, axis=1),
|
|
numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
|
C=mass0, reduce_C_function=numpy.nanmean)
|
|
|
|
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[0].set_ylim(0.0, 0.75)
|
|
axs[0].set_ylabel(r"Mean max. pair overlap")
|
|
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_ylabel(r"Uncertainty of max. pair overlap")
|
|
axs[2].set_xlabel(r"Mean max. pair overlap")
|
|
axs[2].set_ylabel(r"Uncertainty of max. pair overlap")
|
|
|
|
label = ["Bin counts", "Bin counts",
|
|
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
|
|
ims = [im1, im2, im3]
|
|
for i in range(3):
|
|
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
|
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
label=label[i])
|
|
axins.xaxis.tick_top()
|
|
axins.xaxis.set_tick_params(labeltop=True)
|
|
axins.xaxis.set_label_position("top")
|
|
|
|
fig.tight_layout()
|
|
fout = join(plt_utils.fout, f"max_pairoverlap_{simname}_{nsim0}.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs mean separation #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
@cache_to_disk(120)
|
|
def get_mass_vs_separation(nsim0, nsimx, simname, min_logmass, boxsize,
|
|
smoothed):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
|
|
cat0 = open_cat(nsim0, simname)
|
|
catx = open_cat(nsimx, simname)
|
|
|
|
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass)
|
|
|
|
mass = numpy.log10(reader.cat0(MASS_KINDS[simname]))
|
|
dist = reader.dist(in_initial=False, boxsize=boxsize, norm_kind="r200c")
|
|
overlap = reader.overlap(smoothed)
|
|
dist = csiborgtools.summary.weighted_stats(dist, overlap, min_weight=0)
|
|
|
|
mask = numpy.isfinite(dist[:, 0])
|
|
mass = mass[mask]
|
|
dist = dist[mask, :]
|
|
dist = numpy.log10(dist)
|
|
|
|
return mass, dist
|
|
|
|
|
|
def mass_vs_separation(nsim0, nsimx, simname, min_logmass, nbins, smoothed,
|
|
boxsize, plot_std):
|
|
mass, dist = get_mass_vs_separation(nsim0, nsimx, simname, min_logmass,
|
|
boxsize, smoothed)
|
|
xbins = numpy.linspace(numpy.nanmin(mass), numpy.nanmax(mass), nbins)
|
|
y = dist[:, 0] if not plot_std else dist[:, 1]
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, ax = plt.subplots()
|
|
|
|
cx = ax.hexbin(mass, y, mincnt=1, bins="log", gridsize=50)
|
|
y_median, yerr = plt_utils.compute_error_bars(mass, y, xbins, sigma=2)
|
|
ax.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3,
|
|
label="CSiBORG" if simname == "csiborg" else None)
|
|
|
|
if simname == "csiborg":
|
|
mass_quijote, dist_quijote = get_mass_vs_separation(
|
|
0, 1, "quijote", min_logmass, boxsize, smoothed)
|
|
xbins_quijote = numpy.linspace(numpy.nanmin(mass_quijote),
|
|
numpy.nanmax(mass_quijote), nbins)
|
|
if not plot_std:
|
|
y_quijote = dist_quijote[:, 0]
|
|
else:
|
|
y_quijote = dist_quijote[:, 1]
|
|
print(mass_quijote)
|
|
print(y_quijote)
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
mass_quijote, y_quijote, xbins_quijote, sigma=2)
|
|
ax.errorbar(0.5 * (xbins_quijote[1:] + xbins_quijote[:-1]),
|
|
y_median_quijote, yerr=yerr_quijote, color='blue',
|
|
ls='dashed',
|
|
capsize=3, label="Quijote")
|
|
ax.legend(fontsize="small", loc="upper left")
|
|
|
|
if not plot_std:
|
|
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
|
|
else:
|
|
ax.set_ylabel(
|
|
r"$\delta \log \langle \Delta R / R_{\rm 200c}\rangle$")
|
|
|
|
fig.colorbar(cx, label="Bin counts")
|
|
ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
|
|
|
|
fig.tight_layout()
|
|
fout = join(plt_utils.fout,
|
|
f"mass_vs_sep_{simname}_{nsim0}_{nsimx}.{ext}")
|
|
if plot_std:
|
|
fout = fout.replace(f".{ext}", f"_std.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs max overlap separation #
|
|
###############################################################################
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_mass_vs_max_overlap_separation(nsim0, nsimx, simname, min_logmass,
|
|
boxsize, smoothed):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
|
|
cat0 = open_cat(nsim0, simname)
|
|
catx = open_cat(nsimx, simname)
|
|
|
|
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass)
|
|
|
|
mass = numpy.log10(reader.cat0(MASS_KINDS[simname]))
|
|
dist = reader.dist(in_initial=False, boxsize=boxsize, norm_kind="r200c")
|
|
overlap = reader.overlap(smoothed)
|
|
|
|
maxoverlap_dist = numpy.full(len(cat0), numpy.nan, dtype=numpy.float32)
|
|
|
|
for i in range(len(cat0)):
|
|
if len(overlap[i]) == 0:
|
|
continue
|
|
imax = numpy.argmax(overlap[i])
|
|
maxoverlap_dist[i] = dist[i][imax]
|
|
|
|
mask = numpy.isfinite(maxoverlap_dist)
|
|
mass = mass[mask]
|
|
maxoverlap_dist = numpy.log10(maxoverlap_dist[mask])
|
|
return mass, maxoverlap_dist
|
|
|
|
|
|
def mass_vs_maxoverlap_separation(nsim0, nsimx, simname, min_logmass, nbins,
|
|
smoothed, boxsize, plot_std):
|
|
mass, y = get_mass_vs_max_overlap_separation(
|
|
nsim0, nsimx, simname, min_logmass, boxsize, smoothed)
|
|
xbins = numpy.linspace(numpy.nanmin(mass), numpy.nanmax(mass), nbins)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, ax = plt.subplots()
|
|
|
|
cx = ax.hexbin(mass, y, mincnt=1, bins="log", gridsize=50)
|
|
y_median, yerr = plt_utils.compute_error_bars(mass, y, xbins, sigma=2)
|
|
ax.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3,
|
|
label="CSiBORG" if simname == "csiborg" else None)
|
|
|
|
if simname == "csiborg":
|
|
mass_quijote, y_quijote = get_mass_vs_max_overlap_separation(
|
|
0, 1, "quijote", min_logmass, boxsize, smoothed)
|
|
xbins_quijote = numpy.linspace(numpy.nanmin(mass_quijote),
|
|
numpy.nanmax(mass_quijote), nbins)
|
|
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
|
|
mass_quijote, y_quijote, xbins_quijote, sigma=2)
|
|
ax.errorbar(0.5 * (xbins_quijote[1:] + xbins_quijote[:-1]),
|
|
y_median_quijote, yerr=yerr_quijote, color='blue',
|
|
ls='dashed',
|
|
capsize=3, label="Quijote")
|
|
ax.legend(fontsize="small", loc="upper left")
|
|
|
|
fig.colorbar(cx, label="Bin counts")
|
|
ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
ax.set_ylabel(r"$\log (\Delta R_{\mathcal{O}_{\max}} / R_{\rm 200c})$")
|
|
|
|
fig.tight_layout()
|
|
fout = join(plt_utils.fout,
|
|
f"mass_vs_maxoverlap_sep_{simname}_{nsim0}_{nsimx}.{ext}")
|
|
if plot_std:
|
|
fout = fout.replace(f".{ext}", f"_std.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs maximum overlap matched mass #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_property_maxoverlap(nsim0, simname, min_logmass, key, min_overlap,
|
|
smoothed):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
min_logmass, smoothed=smoothed)
|
|
|
|
cat0 = open_cat(nsim0, simname)
|
|
catxs = open_cats(nsimxs, simname)
|
|
|
|
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
|
|
min_logmass)
|
|
mass0 = reader.cat0(MASS_KINDS[simname])
|
|
mask = mass0 > 10**min_logmass
|
|
|
|
max_overlap = reader.max_overlap(min_overlap, smoothed)[mask]
|
|
prop_maxoverlap = reader.max_overlap_key(key, min_overlap, smoothed)[mask]
|
|
|
|
return {"mass0": mass0[mask],
|
|
"prop0": reader.cat0(key)[mask],
|
|
"max_overlap": max_overlap,
|
|
"prop_maxoverlap": prop_maxoverlap,
|
|
}
|
|
|
|
|
|
def mtot_vs_maxoverlap_mass(nsim0, simname, min_logmass, smoothed, nbins,
|
|
min_overlap=0, ext="png"):
|
|
mass_kind = MASS_KINDS[simname]
|
|
x = get_property_maxoverlap(nsim0, simname, min_logmass, mass_kind,
|
|
min_overlap, smoothed)
|
|
|
|
mass0 = numpy.log10(x["mass0"])
|
|
stat = numpy.log10(x["prop_maxoverlap"])
|
|
weight = x["max_overlap"]
|
|
|
|
mu = plt_utils.nan_weighted_average(stat, weight, axis=1)
|
|
std = plt_utils.nan_weighted_std(stat, weight, axis=1)
|
|
|
|
xbins = numpy.linspace(*numpy.percentile(mass0, [0, 100]), nbins)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 1.75, 2.625))
|
|
|
|
m = numpy.isfinite(mass0) & numpy.isfinite(mu)
|
|
|
|
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=50)
|
|
y_median, yerr = plt_utils.compute_error_bars(mass0[m], mu[m], xbins,
|
|
sigma=2)
|
|
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=50)
|
|
y_median, yerr = plt_utils.compute_error_bars(mass0[m], std[m], xbins,
|
|
sigma=2)
|
|
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
print("True to expectation corr: ", kendalltau(mass0[m], mu[m]))
|
|
|
|
t = numpy.linspace(*numpy.percentile(mass0, [0, 100]), 1000)
|
|
axs[0].plot(t, t, color="blue", linestyle="--")
|
|
axs[0].plot(t, t + 0.2, color="blue", linestyle="--", alpha=0.5)
|
|
axs[0].plot(t, t - 0.2, color="blue", linestyle="--", alpha=0.5)
|
|
|
|
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[0].set_ylabel(
|
|
r"Max. overlap mean of $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_ylabel(
|
|
r"Max. overlap std. of $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
|
|
ims = [im0, im1]
|
|
for i in range(2):
|
|
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
|
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
label="Bin counts")
|
|
axins.xaxis.tick_top()
|
|
axins.xaxis.set_tick_params(labeltop=True)
|
|
axins.xaxis.set_label_position("top")
|
|
|
|
fig.tight_layout()
|
|
fout = join(plt_utils.fout,
|
|
f"max_totpartmass_{simname}_{nsim0}_{min_logmass}_{min_overlap}.{ext}") # noqa
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.show()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs expected matched mass #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
def mtot_vs_expected_mass(nsim0, simname, min_logmass, smoothed, nbins,
|
|
min_overlap=0, max_prob_nomatch=1, ext="png"):
|
|
x = get_expected_mass(nsim0, simname, min_overlap, min_logmass, smoothed)
|
|
|
|
mass = x["mass0"]
|
|
mu = x["mu"]
|
|
std = x["std"]
|
|
prob_nomatch = x["prob_nomatch"]
|
|
|
|
mass = numpy.log10(mass)
|
|
prob_nomatch = numpy.nanmedian(prob_nomatch, axis=1)
|
|
|
|
mask = numpy.isfinite(mass) & numpy.isfinite(mu)
|
|
mask &= (prob_nomatch <= max_prob_nomatch)
|
|
|
|
xbins = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), nbins)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
|
|
im0 = axs[0].hexbin(mass[mask], mu[mask], mincnt=1, bins="log",
|
|
gridsize=50,)
|
|
y_median, yerr = plt_utils.compute_error_bars(mass[mask], mu[mask],
|
|
xbins, sigma=2)
|
|
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
im1 = axs[1].hexbin(mass[mask], std[mask], mincnt=1, bins="log",
|
|
gridsize=50)
|
|
y_median, yerr = plt_utils.compute_error_bars(mass[mask], std[mask],
|
|
xbins, sigma=2)
|
|
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
|
|
color='red', ls='dashed', capsize=3)
|
|
|
|
im2 = axs[2].hexbin(1 - prob_nomatch[mask], mass[mask] - mu[mask],
|
|
gridsize=50, C=mass[mask],
|
|
reduce_C_function=numpy.nanmedian)
|
|
|
|
axs[2].axhline(0, color="red", linestyle="--", alpha=0.5)
|
|
axs[0].set_xlabel(r"Reference $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_xlabel(r"Reference $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$")
|
|
axs[2].set_xlabel(r"1 - median prob. of no match")
|
|
axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$")
|
|
|
|
t = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), 1000)
|
|
axs[0].plot(t, t, color="blue", linestyle="--")
|
|
axs[0].plot(t, t + 0.2, color="blue", linestyle="--", alpha=0.5)
|
|
axs[0].plot(t, t - 0.2, color="blue", linestyle="--", alpha=0.5)
|
|
|
|
ims = [im0, im1, im2]
|
|
labels = ["Bin counts", "Bin counts",
|
|
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
|
|
for i in range(3):
|
|
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
|
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
label=labels[i])
|
|
axins.xaxis.tick_top()
|
|
axins.xaxis.set_tick_params(labeltop=True)
|
|
axins.xaxis.set_label_position("top")
|
|
|
|
fig.tight_layout()
|
|
fout = join(
|
|
plt_utils.fout,
|
|
f"mass_vs_expmass_{nsim0}_{simname}_{max_prob_nomatch}.{ext}"
|
|
)
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Total DM halo mass vs maximum overlap halo property #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
def mtot_vs_maxoverlap_property(nsim0, simname, min_logmass, key, min_overlap,
|
|
smoothed):
|
|
mass_kind = MASS_KINDS[simname]
|
|
assert key != mass_kind
|
|
|
|
x = get_property_maxoverlap(nsim0, simname, min_logmass, key, min_overlap,
|
|
smoothed)
|
|
mass0 = x["mass0"]
|
|
prop0 = x["prop0"]
|
|
stat = x["prop_maxoverlap"]
|
|
|
|
xlabels = {"lambda200c": r"\log \lambda_{\rm 200c}"}
|
|
key_label = xlabels.get(key, key)
|
|
|
|
mass0 = numpy.log10(mass0)
|
|
prop0 = numpy.log10(prop0)
|
|
|
|
mu = numpy.nanmean(stat, axis=1)
|
|
std = numpy.nanstd(numpy.log10(stat), axis=1)
|
|
mu = numpy.log10(mu)
|
|
|
|
with plt.style.context(plt_utils.mplstyle):
|
|
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
|
|
im0 = axs[0].hexbin(mass0, mu - prop0, mincnt=1, bins="log",
|
|
gridsize=30)
|
|
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=30)
|
|
im2 = axs[2].hexbin(prop0, mu, mincnt=1, bins="log", gridsize=30)
|
|
m = numpy.isfinite(prop0) & numpy.isfinite(mu)
|
|
print("True to expectation corr: ", kendalltau(prop0[m], mu[m]))
|
|
|
|
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[0].set_ylabel(r"True - max. overlap mean of ${}$"
|
|
.format(key_label))
|
|
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label))
|
|
axs[2].set_xlabel(r"${}$".format(key_label))
|
|
axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
|
|
|
t = numpy.linspace(*numpy.percentile(prop0[m], [0, 100]), 1000)
|
|
axs[2].plot(t, t, color="blue", linestyle="--")
|
|
axs[2].plot(t, t + 0.2, color="blue", linestyle="--", alpha=0.5)
|
|
axs[2].plot(t, t - 0.2, color="blue", linestyle="--", alpha=0.5)
|
|
|
|
ims = [im0, im1, im2]
|
|
for i in range(3):
|
|
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
|
|
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
label="Bin counts")
|
|
axins.xaxis.tick_top()
|
|
axins.xaxis.set_tick_params(labeltop=True)
|
|
axins.xaxis.set_label_position("top")
|
|
|
|
fig.tight_layout()
|
|
fout = join(plt_utils.fout,
|
|
f"max_{key}_{simname}_{nsim0}_{min_overlap}.{ext}")
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# Max's matching vs overlap success #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
@cache_to_disk(120)
|
|
def get_matching_max_vs_overlap(simname, nsim0, min_logmass, mult):
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
|
|
nsimsx = [nsim for nsim in paths.get_ics(simname) if nsim != nsim0]
|
|
for i in trange(len(nsimsx), desc="Loading data"):
|
|
nsimx = nsimsx[i]
|
|
fpath = paths.match_max(simname, nsim0, nsimx, min_logmass,
|
|
mult=mult)
|
|
|
|
data = numpy.load(fpath, allow_pickle=True)
|
|
|
|
if i == 0:
|
|
mass0 = data["mass0"]
|
|
max_overlap = numpy.full((mass0.size, len(nsimsx)), numpy.nan)
|
|
match_overlap = numpy.full((mass0.size, len(nsimsx)), numpy.nan)
|
|
success = numpy.zeros((mass0.size, len(nsimsx)), numpy.bool_)
|
|
|
|
max_overlap[:, i] = data["max_overlap"]
|
|
match_overlap[:, i] = data["match_overlap"]
|
|
success[:, i] = data["success"]
|
|
|
|
return {"mass0": mass0, "max_overlap": max_overlap,
|
|
"match_overlap": match_overlap, "success": success}
|
|
|
|
|
|
def matching_max_vs_overlap(simname, nsim0, min_logmass):
|
|
left_edges = numpy.arange(min_logmass, 15, 0.1)
|
|
nsims = 100 if simname == "csiborg" else 9
|
|
|
|
with plt.style.context("science"):
|
|
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 2, 2.625))
|
|
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
|
|
for n, mult in enumerate([2.5, 5., 7.5, 10.0]):
|
|
x = get_matching_max_vs_overlap(simname,
|
|
nsim0, min_logmass, mult=mult)
|
|
mass0 = numpy.log10(x["mass0"])
|
|
max_overlap = x["max_overlap"]
|
|
match_overlap = x["match_overlap"]
|
|
success = x["success"]
|
|
|
|
nbins = len(left_edges)
|
|
y = numpy.full((nbins, nsims), numpy.nan)
|
|
y2 = numpy.full(nbins, numpy.nan)
|
|
y2err = numpy.full(nbins, numpy.nan)
|
|
for i in range(nbins):
|
|
m = mass0 > left_edges[i]
|
|
for j in range(nsims):
|
|
y[i, j] = numpy.sum(
|
|
max_overlap[m, j] == match_overlap[m, j])
|
|
y[i, j] /= numpy.sum(success[m, j])
|
|
|
|
y2[i] = numpy.mean(numpy.sum(success[m, :], axis=1) / nsims)
|
|
y2err[i] = numpy.std(numpy.sum(success[m, :], axis=1) / nsims)
|
|
|
|
offset = numpy.random.normal(0, 0.015)
|
|
|
|
ysummary = numpy.percentile(y, [16, 50, 84], axis=1)
|
|
axs[0].errorbar(
|
|
left_edges + offset, ysummary[1],
|
|
yerr=[ysummary[1] - ysummary[0], ysummary[2] - ysummary[1]],
|
|
capsize=4, c=cols[n], ls="dashed",
|
|
label=r"$\leq {}~R_{{\rm 200c}}$".format(mult), errorevery=2)
|
|
|
|
axs[1].errorbar(left_edges + offset, y2, yerr=y2err,
|
|
capsize=4, errorevery=2, c=cols[n], ls="dashed")
|
|
|
|
axs[0].legend(ncols=2, fontsize="small")
|
|
for i in range(2):
|
|
axs[i].set_xlabel(r"$\log M_{\rm tot, min} ~ [M_\odot / h]$")
|
|
|
|
axs[1].set_ylim(0)
|
|
axs[0].set_ylabel(r"$f_{\rm agreement}$")
|
|
axs[1].set_ylabel(r"$f_{\rm match}$")
|
|
|
|
fig.tight_layout()
|
|
fout = join(
|
|
plt_utils.fout,
|
|
f"matching_max_agreement_{simname}_{nsim0}_{min_logmass}.png")
|
|
print(f"Saving to `{fout}`.")
|
|
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
plt.close()
|
|
|
|
|
|
# --------------------------------------------------------------------------- #
|
|
###############################################################################
|
|
# KL final snapshot vs overlaps #
|
|
###############################################################################
|
|
# --------------------------------------------------------------------------- #
|
|
|
|
|
|
# def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
|
# upper_threshold=False):
|
|
# """
|
|
# Plot KL divergence vs overlap for CSiBORG.
|
|
#
|
|
# Parameters
|
|
# ----------
|
|
# runs : str
|
|
# Run names.
|
|
# nsim : int
|
|
# Simulation index.
|
|
# kwargs : dict
|
|
# Nearest neighbour reader keyword arguments.
|
|
# runs_to_mass : dict
|
|
# Dictionary mapping run names to total halo mass range.
|
|
# plot_std : bool, optional
|
|
# Whether to plot the standard deviation of the overlap distribution.
|
|
# upper_threshold : bool, optional
|
|
# Whether to enforce an upper threshold on halo mass.
|
|
#
|
|
# Returns
|
|
# -------
|
|
# None
|
|
# """
|
|
# paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
|
# nn_reader = csiborgtools.summary.NearestNeighbourReader(**kwargs, paths=paths)
|
|
#
|
|
# xs, ys1, ys2, cs = [], [], [], []
|
|
# for run in runs:
|
|
# nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
|
# nn_hindxs = nn_data["ref_hindxs"]
|
|
# mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap_summary("csiborg", nsim) # noqa
|
|
#
|
|
# # We need to match the hindxs between the two.
|
|
# hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
|
# mask = numpy.asanyarray([hind2overlap_array[hind]
|
|
# for hind in nn_hindxs])
|
|
# summed_overlap = summed_overlap[mask]
|
|
# prob_nomatch = prob_nomatch[mask]
|
|
# mass = mass[mask]
|
|
#
|
|
# x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
|
# y1 = 1 - numpy.mean(prob_nomatch, axis=1)
|
|
# y2 = numpy.std(prob_nomatch, axis=1)
|
|
# cmin, cmax = make_binlims(run, runs_to_mass, upper_threshold)
|
|
# mask = (mass >= cmin) & (mass < cmax if upper_threshold else True)
|
|
# xs.append(x[mask])
|
|
# ys1.append(y1[mask])
|
|
# ys2.append(y2[mask])
|
|
# cs.append(numpy.log10(mass[mask]))
|
|
#
|
|
# xs = numpy.concatenate(xs)
|
|
# ys1 = numpy.concatenate(ys1)
|
|
# ys2 = numpy.concatenate(ys2)
|
|
# cs = numpy.concatenate(cs)
|
|
#
|
|
# with plt.style.context(plt_utils.mplstyle):
|
|
# plt.figure()
|
|
# plt.hexbin(xs, ys1, C=cs, gridsize=50, mincnt=0,
|
|
# reduce_C_function=numpy.median)
|
|
# mask = numpy.isfinite(xs) & numpy.isfinite(ys1)
|
|
# corr = plt_utils.latex_float(*kendalltau(xs[mask], ys1[mask]))
|
|
# plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small")
|
|
#
|
|
# plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
|
# plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
|
# plt.ylabel("1 - mean prob. of no match")
|
|
#
|
|
# plt.tight_layout()
|
|
# for ext in ["png"]:
|
|
# nsim = str(nsim).zfill(5)
|
|
# fout = join(plt_utils.fout,
|
|
# f"kl_vs_overlap_mean_{nsim}_{runs}.{ext}")
|
|
# if upper_threshold:
|
|
# fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}")
|
|
# print(f"Saving to `{fout}`.")
|
|
# plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
# plt.close()
|
|
#
|
|
# if not plot_std:
|
|
# return
|
|
#
|
|
# with plt.style.context(plt_utils.mplstyle):
|
|
# plt.figure()
|
|
# plt.hexbin(xs, ys2, C=cs, gridsize=50, mincnt=0,
|
|
# reduce_C_function=numpy.median)
|
|
# plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
|
# plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
|
# plt.ylabel(r"Ensemble std of summed overlap")
|
|
# mask = numpy.isfinite(xs) & numpy.isfinite(ys2)
|
|
# corr = plt_utils.latex_float(*kendalltau(xs[mask], ys2[mask]))
|
|
# plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small")
|
|
#
|
|
# plt.tight_layout()
|
|
# for ext in ["png"]:
|
|
# nsim = str(nsim).zfill(5)
|
|
# fout = join(plt_utils.fout,
|
|
# f"kl_vs_overlap_std_{nsim}_{runs}.{ext}")
|
|
# if upper_threshold:
|
|
# fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}")
|
|
# print(f"Saving to `{fout}`.")
|
|
# plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
# plt.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
min_logmass = 13.25
|
|
smoothed = True
|
|
nbins = 10
|
|
ext = "png"
|
|
plot_quijote = True
|
|
min_maxoverlap = 0.
|
|
|
|
funcs = [
|
|
# "get_overlap_summary",
|
|
# "get_expected_mass",
|
|
# "get_mtot_vs_all_pairoverlap",
|
|
# "get_mtot_vs_maxpairoverlap",
|
|
# "get_mass_vs_separation",
|
|
# "mass_vs_maxoverlap_separation",
|
|
# "get_property_maxoverlap",
|
|
]
|
|
for func in funcs:
|
|
print(f"Cleaning up cache for `{func}`.")
|
|
delete_disk_caches_for_function(func)
|
|
|
|
if False:
|
|
mtot_vs_all_pairoverlap(7444, "csiborg", min_logmass, smoothed,
|
|
nbins, ext=ext)
|
|
if plot_quijote:
|
|
mtot_vs_all_pairoverlap(0, "quijote", min_logmass, smoothed,
|
|
nbins, ext=ext)
|
|
|
|
if False:
|
|
mtot_vs_maxpairoverlap(7444, "csiborg", "fof_totpartmass", min_logmass,
|
|
smoothed, nbins, ext=ext)
|
|
if plot_quijote:
|
|
mtot_vs_maxpairoverlap(0, "quijote", "group_mass", min_logmass,
|
|
smoothed, nbins, ext=ext)
|
|
|
|
if False:
|
|
mtot_vs_summedpairoverlap(7444, "csiborg", min_logmass, smoothed,
|
|
nbins, ext)
|
|
if plot_quijote:
|
|
mtot_vs_summedpairoverlap(0, "quijote", min_logmass, smoothed,
|
|
nbins, ext)
|
|
if False:
|
|
mtot_vs_maxoverlap_mass(7444, "csiborg", min_logmass, smoothed,
|
|
nbins, min_maxoverlap, ext)
|
|
if plot_quijote:
|
|
mtot_vs_maxoverlap_mass(0, "quijote", min_logmass, smoothed,
|
|
nbins, min_maxoverlap, ext)
|
|
|
|
if False:
|
|
mtot_vs_expected_mass(7444, "csiborg", min_logmass, smoothed, nbins,
|
|
min_overlap=0, max_prob_nomatch=1, ext=ext)
|
|
if plot_quijote:
|
|
mtot_vs_expected_mass(0, "quijote", min_logmass, smoothed, nbins,
|
|
min_overlap=0, max_prob_nomatch=1, ext=ext)
|
|
|
|
if False:
|
|
mass_vs_separation(7444, 7444 + 24, "csiborg", min_logmass, nbins,
|
|
smoothed, boxsize=677.7, plot_std=False)
|
|
if plot_quijote:
|
|
mass_vs_separation(0, 1, "quijote", min_logmass, nbins,
|
|
smoothed, boxsize=1000, plot_std=False)
|
|
if False:
|
|
mass_vs_maxoverlap_separation(7444, 7444 + 24, "csiborg", min_logmass,
|
|
nbins, smoothed, boxsize=677.7,
|
|
plot_std=False)
|
|
if plot_quijote:
|
|
mass_vs_maxoverlap_separation(
|
|
0, 1, "quijote", min_logmass, nbins, smoothed, boxsize=1000,
|
|
plot_std=False)
|
|
|
|
if False:
|
|
mtot_vs_mean_max_overlap(7444, "csiborg", min_logmass, smoothed, nbins)
|
|
|
|
if plot_quijote:
|
|
mtot_vs_mean_max_overlap(0, "quijote", min_logmass, smoothed,
|
|
nbins)
|
|
|
|
if False:
|
|
key = "lambda200c"
|
|
mtot_vs_maxoverlap_property(7444, "csiborg", min_logmass, key,
|
|
min_maxoverlap, smoothed)
|
|
if plot_quijote:
|
|
mtot_vs_maxoverlap_property(0, "quijote", min_logmass, key,
|
|
min_maxoverlap, smoothed)
|
|
|
|
if False:
|
|
matching_max_vs_overlap("csiborg", 7444, min_logmass)
|
|
|
|
if plot_quijote:
|
|
matching_max_vs_overlap("quijote", 0, min_logmass)
|
|
|
|
if True:
|
|
mtot_vs_maxpairoverlap_consistency(
|
|
7444, "csiborg", "fof_totpartmass", min_logmass, smoothed,
|
|
ext="png")
|
|
# if plot_quijote:
|
|
# mtot_vs_maxpairoverlap_consistency(
|
|
# 0, "quijote", "group_mass", min_logmass, smoothed,
|
|
# ext="png")
|
|
|
|
|