csiborgtools/notebooks/overlap/plot_match.py
Richard Stiskalek ee222cd010
Fix overlap runs ()
* Update nb

* Update script

* Update script

* Rename

* Update script

* Update script

* Remove warning

* Ignore minors when extracting MAH

* Fix paths bug

* Move notebooks

* Move files

* Rename and delete things

* Rename file

* Move file

* Rename things

* Remove old print statement

* Add basic MAH plot

* Add random MAH path

* Output snapshot numbers

* Add MAH random extraction

* Fix redshift bug

* Edit script

* Add extracting random MAH

* Little updates

* Add CB2 redshift

* Add some caching

* Add diagnostic plots

* Add caching

* Minor updates

* Update nb

* Update notebook

* Update script

* Add Sorce randoms

* Add CB2 varysmall

* Update nb

* Update nb

* Update nb

* Use catalogue HMF

* Move definition of radec2galactic

* Update nb

* Update import

* Update import

* Add galatic coords to catalogues

* Update nb
2024-04-08 11:23:21 +02:00

1233 lines
51 KiB
Python

# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from os.path import join
import matplotlib.pyplot as plt
import numpy
import scienceplots # noqa
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
from scipy.stats import kendalltau
from tqdm import tqdm, trange
import csiborgtools
import plt_utils
MASS_KINDS = {"csiborg": "fof_totpartmass",
"quijote": "group_mass",
}
def open_cat(nsim, simname):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if simname == "csiborg":
bounds = {"dist": (0, 155)}
cat = csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, bounds=bounds)
elif simname == "quijote":
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap=4, load_fitted=True, load_initial=True,
with_lagpatch=False)
else:
raise ValueError(f"Unknown simulation name: {simname}.")
return cat
def open_cats(nsims, simname):
catxs = [None] * len(nsims)
for i, nsim in enumerate(tqdm(nsims, desc="Opening catalogues")):
catxs[i] = open_cat(nsim, simname)
return catxs
@cache_to_disk(120)
def get_overlap_summary(nsim0, simname, min_logmass, smoothed):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
min_logmass, smoothed=smoothed)
cat0 = open_cat(nsim0, simname)
catxs = open_cats(nsimxs, simname)
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
min_logmass)
mass0 = reader.cat0(MASS_KINDS[simname])
mask = mass0 > 10**min_logmass
return {"mass0": mass0[mask],
"hid0": reader.cat0("index")[mask],
"summed_overlap": reader.summed_overlap(smoothed)[mask],
"max_overlap": reader.max_overlap(0, smoothed)[mask],
"prob_nomatch": reader.prob_nomatch(smoothed)[mask],
}
@cache_to_disk(120)
def get_expected_mass(nsim0, simname, min_overlap, min_logmass, smoothed):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
min_logmass, smoothed=True)[:3]
cat0 = open_cat(nsim0, simname)
catxs = open_cats(nsimxs, simname)
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
min_logmass)
mass0 = reader.cat0(MASS_KINDS[simname])
mask = mass0 > 10**min_logmass
mu, std = reader.counterpart_mass(
from_smoothed=True, overlap_threshold=min_overlap, return_full=False)
return {"mass0": mass0[mask],
"mu": mu[mask],
"std": std[mask],
"prob_nomatch": reader.prob_nomatch(smoothed)[mask],
}
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs pair overlaps #
###############################################################################
# --------------------------------------------------------------------------- #
@cache_to_disk(120)
def get_mtot_vs_all_pairoverlap(nsim0, simname, mass_kind, min_logmass,
smoothed, nbins):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
min_logmass, smoothed=smoothed)
nsimxs = nsimxs
cat0 = open_cat(nsim0, simname)
catxs = open_cats(nsimxs, simname)
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
min_logmass)
x = [None] * len(catxs)
y = [None] * len(catxs)
for i in trange(len(catxs), desc="Stacking catalogues"):
x[i] = numpy.log10(
numpy.concatenate(reader[i].copy_per_match(mass_kind)))
y[i] = numpy.concatenate(reader[i].overlap(smoothed))
x = numpy.concatenate(x)
y = numpy.concatenate(y)
xbins = numpy.linspace(min(x), max(x), nbins)
return x, y, xbins
def mtot_vs_all_pairoverlap(nsim0, simname, min_logmass, smoothed, nbins,
ext="png"):
mass_kind = MASS_KINDS[simname]
x, y, xbins = get_mtot_vs_all_pairoverlap(nsim0, simname, mass_kind,
min_logmass, smoothed, nbins)
with plt.style.context(plt_utils.mplstyle):
plt.figure()
hb = plt.hexbin(x, y, mincnt=1, gridsize=50, bins="log")
y_median, yerr = plt_utils.compute_error_bars(x, y, xbins, sigma=2)
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3,
label="CSiBORG" if simname == "csiborg" else None)
if simname == "csiborg":
x_quijote, y_quijote, xbins_quijote = get_mtot_vs_all_pairoverlap(
0, "quijote", "group_mass", min_logmass, smoothed, nbins)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
x_quijote, y_quijote, xbins_quijote, sigma=2)
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
y_median_quijote, yerr=yerr_quijote,
color='blue', ls='dashed', capsize=3,
label="Quijote")
plt.legend(ncol=2, fontsize="small")
plt.colorbar(hb, label="Counts in bins")
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
plt.ylabel("Pair overlap")
plt.xlim(numpy.min(x))
plt.ylim(0., 1.)
plt.tight_layout()
fout = join(plt_utils.fout,
f"mass_vs_pair_overlap_{simname}_{nsim0}.{ext}")
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs maximum pair overlaps #
###############################################################################
# --------------------------------------------------------------------------- #
@cache_to_disk(120)
def get_mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass,
smoothed, nbins):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
min_logmass, smoothed=smoothed)
cat0 = open_cat(nsim0, simname)
catxs = open_cats(nsimxs, simname)
def get_max(y_):
if len(y_) == 0:
return 0
return numpy.nanmax(y_)
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
min_logmass)
x = [None] * len(catxs)
y = [None] * len(catxs)
for i in trange(len(catxs), desc="Stacking catalogues"):
x[i] = numpy.log10(cat0[mass_kind])
y[i] = numpy.array([get_max(y_) for y_ in reader[i].overlap(smoothed)])
mask = x[i] > min_logmass
x[i] = x[i][mask]
y[i] = y[i][mask]
x = numpy.concatenate(x)
y = numpy.concatenate(y)
xbins = numpy.linspace(min(x), max(x), nbins)
return x, y, xbins
def mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass, smoothed,
nbins, ext="png"):
x, y, xbins = get_mtot_vs_maxpairoverlap(nsim0, simname, mass_kind,
min_logmass, smoothed, nbins)
with plt.style.context(plt_utils.mplstyle):
plt.figure()
plt.hexbin(x, y, mincnt=1, gridsize=50, bins="log")
y_median, yerr = plt_utils.compute_error_bars(x, y, xbins, sigma=2)
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3,
label="CSiBORG" if simname == "csiborg" else None)
if simname == "csiborg":
x_quijote, y_quijote, xbins_quijote = get_mtot_vs_all_pairoverlap(
0, "quijote", "group_mass", min_logmass, smoothed, nbins)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
x_quijote, y_quijote, xbins_quijote, sigma=2)
plt.errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
y_median_quijote, yerr=yerr_quijote,
color='blue', ls='dashed', capsize=3,
label="Quijote")
plt.legend(ncol=2, fontsize="small")
plt.colorbar(label="Counts in bins")
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
plt.ylabel("Maximum pair overlap")
plt.ylim(-0.02, 1.)
plt.xlim(numpy.min(x) - 0.05)
plt.tight_layout()
fout = join(plt_utils.fout, f"mass_vs_max_pair_overlap{nsim0}.{ext}")
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs maximum pair overlap consistency #
###############################################################################
# --------------------------------------------------------------------------- #
@cache_to_disk(120)
def get_mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind,
min_logmass, smoothed):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
min_logmass, smoothed=smoothed)
cat0 = open_cat(nsim0, simname)
catxs = open_cats(nsimxs, simname)
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
min_logmass)
x = numpy.log10(cat0[mass_kind])
mask = x > min_logmass
x = x[mask]
nhalos = len(x)
y = numpy.full((len(catxs), nhalos), numpy.nan)
for i in trange(len(catxs), desc="Stacking catalogues"):
overlaps = reader[i].overlap(smoothed)
for j in range(nhalos):
# if len(overlaps[j]) > 0:
y[i, j] = numpy.sum(overlaps[j])
return x, y
def mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind, min_logmass,
smoothed, ext="png"):
left_edges = numpy.arange(min_logmass, 15, 0.1)
# delete_disk_caches_for_function("get_mtot_vs_maxpairoverlap_consistency")
x, y0 = get_mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind,
min_logmass, smoothed)
nsims, nhalos = y0.shape
x_2, y0_2 = get_mtot_vs_maxpairoverlap_consistency(
0, "quijote", "group_mass", min_logmass, smoothed)
nsims2, nhalos = y0_2.shape
with plt.style.context(plt_utils.mplstyle):
plt.figure()
yplot = numpy.full(len(left_edges), numpy.nan)
yplot_2 = numpy.full(len(left_edges), numpy.nan)
for ymin in [0.3]:
y = numpy.sum(y0 > ymin, axis=0) / nsims
y_2 = numpy.sum(y0_2 > ymin, axis=0) / nsims2
for i, left_edge in enumerate(left_edges):
mask = x > left_edge
yplot[i] = numpy.mean(y[mask]) #/ nsims
mask = x_2 > left_edge
yplot_2[i] = numpy.mean(y_2[mask]) #/ nsims
plt.plot(left_edges, yplot, label="CSiBORG")
plt.plot(left_edges, yplot_2, label="Quijote")
plt.legend()
# y2 = numpy.concatenate(y0)
# y2 = y2[y2 > 0]
# m = y0 > 0
# plt.hist(y0[m], bins=30, density=True, histtype="step")
# m = y0_2 > 0
# plt.hist(y0_2[m], bins=30, density=True, histtype="step")
# plt.yscale("log")
plt.tight_layout()
fout = join(
plt_utils.fout,
f"mass_vs_max_pair_overlap_consistency_{simname}_{nsim0}.{ext}")
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs summed pair overlaps #
###############################################################################
# --------------------------------------------------------------------------- #
def mtot_vs_summedpairoverlap(nsim0, simname, min_logmass, smoothed, nbins,
ext="png"):
x = get_overlap_summary(nsim0, simname, min_logmass, smoothed)
mass0 = numpy.log10(x["mass0"])
mean_overlap = numpy.nanmean(x["summed_overlap"], axis=1)
std_overlap = numpy.nanstd(x["summed_overlap"], axis=1)
mean_prob_nomatch = numpy.nanmean(x["prob_nomatch"], axis=1)
xbins = numpy.linspace(numpy.nanmin(mass0), numpy.nanmax(mass0), nbins)
with plt.style.context(plt_utils.mplstyle):
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
im1 = axs[0].hexbin(mass0, mean_overlap, mincnt=1, bins="log",
gridsize=30)
y_median, yerr = plt_utils.compute_error_bars(
mass0, mean_overlap, xbins, sigma=2)
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
im2 = axs[1].hexbin(mass0, std_overlap, mincnt=1, bins="log",
gridsize=30)
y_median, yerr = plt_utils.compute_error_bars(
mass0, std_overlap, xbins, sigma=2)
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
if simname == "csiborg":
x_quijote = get_overlap_summary(0, "quijote", min_logmass,
smoothed)
mass0_quijote = numpy.log10(x_quijote["mass0"])
mean_overlap_quijote = numpy.nanmean(x_quijote["summed_overlap"],
axis=1)
std_overlap_quijote = numpy.nanstd(x_quijote["summed_overlap"],
axis=1)
xbins_quijote = numpy.linspace(numpy.nanmin(mass0),
numpy.nanmax(mass0), nbins)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
mass0_quijote, mean_overlap_quijote, xbins_quijote, sigma=2)
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
y_median_quijote, yerr=yerr_quijote,
color='blue', ls='dashed', capsize=3)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
mass0_quijote, std_overlap_quijote, xbins_quijote, sigma=2)
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
y_median_quijote, yerr=yerr_quijote,
color='blue', ls='dashed', capsize=3)
im3 = axs[2].scatter(1 - mean_overlap, mean_prob_nomatch, c=mass0,
s=2, rasterized=True)
t = numpy.linspace(numpy.nanmin(1 - mean_overlap), 1, 100)
axs[2].plot(t, t, color="red", linestyle="--")
axs[0].set_ylim(0., 0.75)
axs[0].set_xlim(numpy.min(mass0))
axs[0].set_xlim(numpy.min(mass0))
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel("Mean summed overlap")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel("Uncertainty of summed overlap")
axs[2].set_xlabel(r"$1 - $ mean summed overlap")
axs[2].set_ylabel("Mean prob. of no match")
label = ["Bin counts", "Bin counts",
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
ims = [im1, im2, im3]
for i in range(3):
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
label=label[i])
axins.xaxis.tick_top()
axins.xaxis.set_tick_params(labeltop=True)
axins.xaxis.set_label_position("top")
fig.tight_layout()
fout = join(plt_utils.fout, f"overlap_stat_{simname}_{nsim0}.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs mean maximum overlap #
###############################################################################
# --------------------------------------------------------------------------- #
def mtot_vs_mean_max_overlap(nsim0, simname, min_logmass, smoothed, nbins):
x = get_overlap_summary(nsim0, simname, min_logmass, smoothed)
mass0 = numpy.log10(x["mass0"])
max_overlap = x["max_overlap"]
xbins = numpy.linspace(numpy.nanmin(mass0), numpy.nanmax(mass0), nbins)
mean_max_overlap = numpy.nanmean(max_overlap, axis=1)
std_max_overlap = numpy.nanstd(max_overlap, axis=1)
with plt.style.context(plt_utils.mplstyle):
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
im1 = axs[0].hexbin(mass0, mean_max_overlap, gridsize=30, mincnt=1,
bins="log")
y_median, yerr = plt_utils.compute_error_bars(
mass0, mean_max_overlap, xbins, sigma=2)
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3,
label="CSiBORG" if simname == "csiborg" else None)
im2 = axs[1].hexbin(mass0, std_max_overlap, gridsize=30, mincnt=1,
bins="log")
y_median, yerr = plt_utils.compute_error_bars(
mass0, std_max_overlap, xbins, sigma=2)
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
if simname == "csiborg":
x_quijote = get_overlap_summary(0, "quijote", min_logmass,
smoothed)
mass0_quijote = numpy.log10(x_quijote["mass0"])
max_overlap_quijote = x_quijote["max_overlap"]
xbins_quijote = numpy.linspace(numpy.nanmin(mass0_quijote),
numpy.nanmax(mass0_quijote), nbins)
mean_max_overlap_quijote = numpy.nanmean(max_overlap_quijote,
axis=1)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
mass0_quijote, mean_max_overlap_quijote, xbins_quijote,
sigma=2)
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
y_median_quijote, yerr=yerr_quijote,
color='blue', ls='dashed', capsize=3,
label="Quijote")
std_max_overlap_quijote = numpy.nanstd(max_overlap_quijote,
axis=1)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
mass0_quijote, std_max_overlap_quijote, xbins_quijote,
sigma=2)
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]) + 0.01,
y_median_quijote, yerr=yerr_quijote,
color='blue', ls='dashed', capsize=3)
axs[0].legend(fontsize="small")
im3 = axs[2].hexbin(numpy.nanmean(max_overlap, axis=1),
numpy.nanstd(max_overlap, axis=1), gridsize=30,
C=mass0, reduce_C_function=numpy.nanmean)
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylim(0.0, 0.75)
axs[0].set_ylabel(r"Mean max. pair overlap")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Uncertainty of max. pair overlap")
axs[2].set_xlabel(r"Mean max. pair overlap")
axs[2].set_ylabel(r"Uncertainty of max. pair overlap")
label = ["Bin counts", "Bin counts",
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
ims = [im1, im2, im3]
for i in range(3):
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
label=label[i])
axins.xaxis.tick_top()
axins.xaxis.set_tick_params(labeltop=True)
axins.xaxis.set_label_position("top")
fig.tight_layout()
fout = join(plt_utils.fout, f"max_pairoverlap_{simname}_{nsim0}.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs mean separation #
###############################################################################
# --------------------------------------------------------------------------- #
@cache_to_disk(120)
def get_mass_vs_separation(nsim0, nsimx, simname, min_logmass, boxsize,
smoothed):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cat0 = open_cat(nsim0, simname)
catx = open_cat(nsimx, simname)
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass)
mass = numpy.log10(reader.cat0(MASS_KINDS[simname]))
dist = reader.dist(in_initial=False, boxsize=boxsize, norm_kind="r200c")
overlap = reader.overlap(smoothed)
dist = csiborgtools.summary.weighted_stats(dist, overlap, min_weight=0)
mask = numpy.isfinite(dist[:, 0])
mass = mass[mask]
dist = dist[mask, :]
dist = numpy.log10(dist)
return mass, dist
def mass_vs_separation(nsim0, nsimx, simname, min_logmass, nbins, smoothed,
boxsize, plot_std):
mass, dist = get_mass_vs_separation(nsim0, nsimx, simname, min_logmass,
boxsize, smoothed)
xbins = numpy.linspace(numpy.nanmin(mass), numpy.nanmax(mass), nbins)
y = dist[:, 0] if not plot_std else dist[:, 1]
with plt.style.context(plt_utils.mplstyle):
fig, ax = plt.subplots()
cx = ax.hexbin(mass, y, mincnt=1, bins="log", gridsize=50)
y_median, yerr = plt_utils.compute_error_bars(mass, y, xbins, sigma=2)
ax.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3,
label="CSiBORG" if simname == "csiborg" else None)
if simname == "csiborg":
mass_quijote, dist_quijote = get_mass_vs_separation(
0, 1, "quijote", min_logmass, boxsize, smoothed)
xbins_quijote = numpy.linspace(numpy.nanmin(mass_quijote),
numpy.nanmax(mass_quijote), nbins)
if not plot_std:
y_quijote = dist_quijote[:, 0]
else:
y_quijote = dist_quijote[:, 1]
print(mass_quijote)
print(y_quijote)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
mass_quijote, y_quijote, xbins_quijote, sigma=2)
ax.errorbar(0.5 * (xbins_quijote[1:] + xbins_quijote[:-1]),
y_median_quijote, yerr=yerr_quijote, color='blue',
ls='dashed',
capsize=3, label="Quijote")
ax.legend(fontsize="small", loc="upper left")
if not plot_std:
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
else:
ax.set_ylabel(
r"$\delta \log \langle \Delta R / R_{\rm 200c}\rangle$")
fig.colorbar(cx, label="Bin counts")
ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
fig.tight_layout()
fout = join(plt_utils.fout,
f"mass_vs_sep_{simname}_{nsim0}_{nsimx}.{ext}")
if plot_std:
fout = fout.replace(f".{ext}", f"_std.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs max overlap separation #
###############################################################################
@cache_to_disk(120)
def get_mass_vs_max_overlap_separation(nsim0, nsimx, simname, min_logmass,
boxsize, smoothed):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cat0 = open_cat(nsim0, simname)
catx = open_cat(nsimx, simname)
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass)
mass = numpy.log10(reader.cat0(MASS_KINDS[simname]))
dist = reader.dist(in_initial=False, boxsize=boxsize, norm_kind="r200c")
overlap = reader.overlap(smoothed)
maxoverlap_dist = numpy.full(len(cat0), numpy.nan, dtype=numpy.float32)
for i in range(len(cat0)):
if len(overlap[i]) == 0:
continue
imax = numpy.argmax(overlap[i])
maxoverlap_dist[i] = dist[i][imax]
mask = numpy.isfinite(maxoverlap_dist)
mass = mass[mask]
maxoverlap_dist = numpy.log10(maxoverlap_dist[mask])
return mass, maxoverlap_dist
def mass_vs_maxoverlap_separation(nsim0, nsimx, simname, min_logmass, nbins,
smoothed, boxsize, plot_std):
mass, y = get_mass_vs_max_overlap_separation(
nsim0, nsimx, simname, min_logmass, boxsize, smoothed)
xbins = numpy.linspace(numpy.nanmin(mass), numpy.nanmax(mass), nbins)
with plt.style.context(plt_utils.mplstyle):
fig, ax = plt.subplots()
cx = ax.hexbin(mass, y, mincnt=1, bins="log", gridsize=50)
y_median, yerr = plt_utils.compute_error_bars(mass, y, xbins, sigma=2)
ax.errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3,
label="CSiBORG" if simname == "csiborg" else None)
if simname == "csiborg":
mass_quijote, y_quijote = get_mass_vs_max_overlap_separation(
0, 1, "quijote", min_logmass, boxsize, smoothed)
xbins_quijote = numpy.linspace(numpy.nanmin(mass_quijote),
numpy.nanmax(mass_quijote), nbins)
y_median_quijote, yerr_quijote = plt_utils.compute_error_bars(
mass_quijote, y_quijote, xbins_quijote, sigma=2)
ax.errorbar(0.5 * (xbins_quijote[1:] + xbins_quijote[:-1]),
y_median_quijote, yerr=yerr_quijote, color='blue',
ls='dashed',
capsize=3, label="Quijote")
ax.legend(fontsize="small", loc="upper left")
fig.colorbar(cx, label="Bin counts")
ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
ax.set_ylabel(r"$\log (\Delta R_{\mathcal{O}_{\max}} / R_{\rm 200c})$")
fig.tight_layout()
fout = join(plt_utils.fout,
f"mass_vs_maxoverlap_sep_{simname}_{nsim0}_{nsimx}.{ext}")
if plot_std:
fout = fout.replace(f".{ext}", f"_std.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs maximum overlap matched mass #
###############################################################################
# --------------------------------------------------------------------------- #
@cache_to_disk(120)
def get_property_maxoverlap(nsim0, simname, min_logmass, key, min_overlap,
smoothed):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
min_logmass, smoothed=smoothed)
cat0 = open_cat(nsim0, simname)
catxs = open_cats(nsimxs, simname)
reader = csiborgtools.summary.NPairsOverlap(cat0, catxs, paths,
min_logmass)
mass0 = reader.cat0(MASS_KINDS[simname])
mask = mass0 > 10**min_logmass
max_overlap = reader.max_overlap(min_overlap, smoothed)[mask]
prop_maxoverlap = reader.max_overlap_key(key, min_overlap, smoothed)[mask]
return {"mass0": mass0[mask],
"prop0": reader.cat0(key)[mask],
"max_overlap": max_overlap,
"prop_maxoverlap": prop_maxoverlap,
}
def mtot_vs_maxoverlap_mass(nsim0, simname, min_logmass, smoothed, nbins,
min_overlap=0, ext="png"):
mass_kind = MASS_KINDS[simname]
x = get_property_maxoverlap(nsim0, simname, min_logmass, mass_kind,
min_overlap, smoothed)
mass0 = numpy.log10(x["mass0"])
stat = numpy.log10(x["prop_maxoverlap"])
weight = x["max_overlap"]
mu = plt_utils.nan_weighted_average(stat, weight, axis=1)
std = plt_utils.nan_weighted_std(stat, weight, axis=1)
xbins = numpy.linspace(*numpy.percentile(mass0, [0, 100]), nbins)
with plt.style.context(plt_utils.mplstyle):
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 1.75, 2.625))
m = numpy.isfinite(mass0) & numpy.isfinite(mu)
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=50)
y_median, yerr = plt_utils.compute_error_bars(mass0[m], mu[m], xbins,
sigma=2)
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=50)
y_median, yerr = plt_utils.compute_error_bars(mass0[m], std[m], xbins,
sigma=2)
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
print("True to expectation corr: ", kendalltau(mass0[m], mu[m]))
t = numpy.linspace(*numpy.percentile(mass0, [0, 100]), 1000)
axs[0].plot(t, t, color="blue", linestyle="--")
axs[0].plot(t, t + 0.2, color="blue", linestyle="--", alpha=0.5)
axs[0].plot(t, t - 0.2, color="blue", linestyle="--", alpha=0.5)
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(
r"Max. overlap mean of $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(
r"Max. overlap std. of $\log M_{\rm tot} ~ [M_\odot / h]$")
ims = [im0, im1]
for i in range(2):
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
label="Bin counts")
axins.xaxis.tick_top()
axins.xaxis.set_tick_params(labeltop=True)
axins.xaxis.set_label_position("top")
fig.tight_layout()
fout = join(plt_utils.fout,
f"max_totpartmass_{simname}_{nsim0}_{min_logmass}_{min_overlap}.{ext}") # noqa
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.show()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs expected matched mass #
###############################################################################
# --------------------------------------------------------------------------- #
def mtot_vs_expected_mass(nsim0, simname, min_logmass, smoothed, nbins,
min_overlap=0, max_prob_nomatch=1, ext="png"):
x = get_expected_mass(nsim0, simname, min_overlap, min_logmass, smoothed)
mass = x["mass0"]
mu = x["mu"]
std = x["std"]
prob_nomatch = x["prob_nomatch"]
mass = numpy.log10(mass)
prob_nomatch = numpy.nanmedian(prob_nomatch, axis=1)
mask = numpy.isfinite(mass) & numpy.isfinite(mu)
mask &= (prob_nomatch <= max_prob_nomatch)
xbins = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), nbins)
with plt.style.context(plt_utils.mplstyle):
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
im0 = axs[0].hexbin(mass[mask], mu[mask], mincnt=1, bins="log",
gridsize=50,)
y_median, yerr = plt_utils.compute_error_bars(mass[mask], mu[mask],
xbins, sigma=2)
axs[0].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
im1 = axs[1].hexbin(mass[mask], std[mask], mincnt=1, bins="log",
gridsize=50)
y_median, yerr = plt_utils.compute_error_bars(mass[mask], std[mask],
xbins, sigma=2)
axs[1].errorbar(0.5 * (xbins[1:] + xbins[:-1]), y_median, yerr=yerr,
color='red', ls='dashed', capsize=3)
im2 = axs[2].hexbin(1 - prob_nomatch[mask], mass[mask] - mu[mask],
gridsize=50, C=mass[mask],
reduce_C_function=numpy.nanmedian)
axs[2].axhline(0, color="red", linestyle="--", alpha=0.5)
axs[0].set_xlabel(r"Reference $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_xlabel(r"Reference $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$")
axs[2].set_xlabel(r"1 - median prob. of no match")
axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$")
t = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), 1000)
axs[0].plot(t, t, color="blue", linestyle="--")
axs[0].plot(t, t + 0.2, color="blue", linestyle="--", alpha=0.5)
axs[0].plot(t, t - 0.2, color="blue", linestyle="--", alpha=0.5)
ims = [im0, im1, im2]
labels = ["Bin counts", "Bin counts",
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
for i in range(3):
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
label=labels[i])
axins.xaxis.tick_top()
axins.xaxis.set_tick_params(labeltop=True)
axins.xaxis.set_label_position("top")
fig.tight_layout()
fout = join(
plt_utils.fout,
f"mass_vs_expmass_{nsim0}_{simname}_{max_prob_nomatch}.{ext}"
)
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Total DM halo mass vs maximum overlap halo property #
###############################################################################
# --------------------------------------------------------------------------- #
def mtot_vs_maxoverlap_property(nsim0, simname, min_logmass, key, min_overlap,
smoothed):
mass_kind = MASS_KINDS[simname]
assert key != mass_kind
x = get_property_maxoverlap(nsim0, simname, min_logmass, key, min_overlap,
smoothed)
mass0 = x["mass0"]
prop0 = x["prop0"]
stat = x["prop_maxoverlap"]
xlabels = {"lambda200c": r"\log \lambda_{\rm 200c}"}
key_label = xlabels.get(key, key)
mass0 = numpy.log10(mass0)
prop0 = numpy.log10(prop0)
mu = numpy.nanmean(stat, axis=1)
std = numpy.nanstd(numpy.log10(stat), axis=1)
mu = numpy.log10(mu)
with plt.style.context(plt_utils.mplstyle):
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
im0 = axs[0].hexbin(mass0, mu - prop0, mincnt=1, bins="log",
gridsize=30)
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=30)
im2 = axs[2].hexbin(prop0, mu, mincnt=1, bins="log", gridsize=30)
m = numpy.isfinite(prop0) & numpy.isfinite(mu)
print("True to expectation corr: ", kendalltau(prop0[m], mu[m]))
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(r"True - max. overlap mean of ${}$"
.format(key_label))
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label))
axs[2].set_xlabel(r"${}$".format(key_label))
axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
t = numpy.linspace(*numpy.percentile(prop0[m], [0, 100]), 1000)
axs[2].plot(t, t, color="blue", linestyle="--")
axs[2].plot(t, t + 0.2, color="blue", linestyle="--", alpha=0.5)
axs[2].plot(t, t - 0.2, color="blue", linestyle="--", alpha=0.5)
ims = [im0, im1, im2]
for i in range(3):
axins = axs[i].inset_axes([0.0, 1.0, 1.0, 0.05])
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
label="Bin counts")
axins.xaxis.tick_top()
axins.xaxis.set_tick_params(labeltop=True)
axins.xaxis.set_label_position("top")
fig.tight_layout()
fout = join(plt_utils.fout,
f"max_{key}_{simname}_{nsim0}_{min_overlap}.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# Max's matching vs overlap success #
###############################################################################
# --------------------------------------------------------------------------- #
@cache_to_disk(120)
def get_matching_max_vs_overlap(simname, nsim0, min_logmass, mult):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsimsx = [nsim for nsim in paths.get_ics(simname) if nsim != nsim0]
for i in trange(len(nsimsx), desc="Loading data"):
nsimx = nsimsx[i]
fpath = paths.match_max(simname, nsim0, nsimx, min_logmass,
mult=mult)
data = numpy.load(fpath, allow_pickle=True)
if i == 0:
mass0 = data["mass0"]
max_overlap = numpy.full((mass0.size, len(nsimsx)), numpy.nan)
match_overlap = numpy.full((mass0.size, len(nsimsx)), numpy.nan)
success = numpy.zeros((mass0.size, len(nsimsx)), numpy.bool_)
max_overlap[:, i] = data["max_overlap"]
match_overlap[:, i] = data["match_overlap"]
success[:, i] = data["success"]
return {"mass0": mass0, "max_overlap": max_overlap,
"match_overlap": match_overlap, "success": success}
def matching_max_vs_overlap(simname, nsim0, min_logmass):
left_edges = numpy.arange(min_logmass, 15, 0.1)
nsims = 100 if simname == "csiborg" else 9
with plt.style.context("science"):
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 2, 2.625))
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
for n, mult in enumerate([2.5, 5., 7.5, 10.0]):
x = get_matching_max_vs_overlap(simname,
nsim0, min_logmass, mult=mult)
mass0 = numpy.log10(x["mass0"])
max_overlap = x["max_overlap"]
match_overlap = x["match_overlap"]
success = x["success"]
nbins = len(left_edges)
y = numpy.full((nbins, nsims), numpy.nan)
y2 = numpy.full(nbins, numpy.nan)
y2err = numpy.full(nbins, numpy.nan)
for i in range(nbins):
m = mass0 > left_edges[i]
for j in range(nsims):
y[i, j] = numpy.sum(
max_overlap[m, j] == match_overlap[m, j])
y[i, j] /= numpy.sum(success[m, j])
y2[i] = numpy.mean(numpy.sum(success[m, :], axis=1) / nsims)
y2err[i] = numpy.std(numpy.sum(success[m, :], axis=1) / nsims)
offset = numpy.random.normal(0, 0.015)
ysummary = numpy.percentile(y, [16, 50, 84], axis=1)
axs[0].errorbar(
left_edges + offset, ysummary[1],
yerr=[ysummary[1] - ysummary[0], ysummary[2] - ysummary[1]],
capsize=4, c=cols[n], ls="dashed",
label=r"$\leq {}~R_{{\rm 200c}}$".format(mult), errorevery=2)
axs[1].errorbar(left_edges + offset, y2, yerr=y2err,
capsize=4, errorevery=2, c=cols[n], ls="dashed")
axs[0].legend(ncols=2, fontsize="small")
for i in range(2):
axs[i].set_xlabel(r"$\log M_{\rm tot, min} ~ [M_\odot / h]$")
axs[1].set_ylim(0)
axs[0].set_ylabel(r"$f_{\rm agreement}$")
axs[1].set_ylabel(r"$f_{\rm match}$")
fig.tight_layout()
fout = join(
plt_utils.fout,
f"matching_max_agreement_{simname}_{nsim0}_{min_logmass}.png")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
# --------------------------------------------------------------------------- #
###############################################################################
# KL final snapshot vs overlaps #
###############################################################################
# --------------------------------------------------------------------------- #
# def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
# upper_threshold=False):
# """
# Plot KL divergence vs overlap for CSiBORG.
#
# Parameters
# ----------
# runs : str
# Run names.
# nsim : int
# Simulation index.
# kwargs : dict
# Nearest neighbour reader keyword arguments.
# runs_to_mass : dict
# Dictionary mapping run names to total halo mass range.
# plot_std : bool, optional
# Whether to plot the standard deviation of the overlap distribution.
# upper_threshold : bool, optional
# Whether to enforce an upper threshold on halo mass.
#
# Returns
# -------
# None
# """
# paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
# nn_reader = csiborgtools.summary.NearestNeighbourReader(**kwargs, paths=paths)
#
# xs, ys1, ys2, cs = [], [], [], []
# for run in runs:
# nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
# nn_hindxs = nn_data["ref_hindxs"]
# mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap_summary("csiborg", nsim) # noqa
#
# # We need to match the hindxs between the two.
# hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
# mask = numpy.asanyarray([hind2overlap_array[hind]
# for hind in nn_hindxs])
# summed_overlap = summed_overlap[mask]
# prob_nomatch = prob_nomatch[mask]
# mass = mass[mask]
#
# x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
# y1 = 1 - numpy.mean(prob_nomatch, axis=1)
# y2 = numpy.std(prob_nomatch, axis=1)
# cmin, cmax = make_binlims(run, runs_to_mass, upper_threshold)
# mask = (mass >= cmin) & (mass < cmax if upper_threshold else True)
# xs.append(x[mask])
# ys1.append(y1[mask])
# ys2.append(y2[mask])
# cs.append(numpy.log10(mass[mask]))
#
# xs = numpy.concatenate(xs)
# ys1 = numpy.concatenate(ys1)
# ys2 = numpy.concatenate(ys2)
# cs = numpy.concatenate(cs)
#
# with plt.style.context(plt_utils.mplstyle):
# plt.figure()
# plt.hexbin(xs, ys1, C=cs, gridsize=50, mincnt=0,
# reduce_C_function=numpy.median)
# mask = numpy.isfinite(xs) & numpy.isfinite(ys1)
# corr = plt_utils.latex_float(*kendalltau(xs[mask], ys1[mask]))
# plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small")
#
# plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
# plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
# plt.ylabel("1 - mean prob. of no match")
#
# plt.tight_layout()
# for ext in ["png"]:
# nsim = str(nsim).zfill(5)
# fout = join(plt_utils.fout,
# f"kl_vs_overlap_mean_{nsim}_{runs}.{ext}")
# if upper_threshold:
# fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}")
# print(f"Saving to `{fout}`.")
# plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
# plt.close()
#
# if not plot_std:
# return
#
# with plt.style.context(plt_utils.mplstyle):
# plt.figure()
# plt.hexbin(xs, ys2, C=cs, gridsize=50, mincnt=0,
# reduce_C_function=numpy.median)
# plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
# plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
# plt.ylabel(r"Ensemble std of summed overlap")
# mask = numpy.isfinite(xs) & numpy.isfinite(ys2)
# corr = plt_utils.latex_float(*kendalltau(xs[mask], ys2[mask]))
# plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small")
#
# plt.tight_layout()
# for ext in ["png"]:
# nsim = str(nsim).zfill(5)
# fout = join(plt_utils.fout,
# f"kl_vs_overlap_std_{nsim}_{runs}.{ext}")
# if upper_threshold:
# fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}")
# print(f"Saving to `{fout}`.")
# plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
# plt.close()
if __name__ == "__main__":
min_logmass = 13.25
smoothed = True
nbins = 10
ext = "png"
plot_quijote = True
min_maxoverlap = 0.
funcs = [
# "get_overlap_summary",
# "get_expected_mass",
# "get_mtot_vs_all_pairoverlap",
# "get_mtot_vs_maxpairoverlap",
# "get_mass_vs_separation",
# "mass_vs_maxoverlap_separation",
# "get_property_maxoverlap",
]
for func in funcs:
print(f"Cleaning up cache for `{func}`.")
delete_disk_caches_for_function(func)
if False:
mtot_vs_all_pairoverlap(7444, "csiborg", min_logmass, smoothed,
nbins, ext=ext)
if plot_quijote:
mtot_vs_all_pairoverlap(0, "quijote", min_logmass, smoothed,
nbins, ext=ext)
if False:
mtot_vs_maxpairoverlap(7444, "csiborg", "fof_totpartmass", min_logmass,
smoothed, nbins, ext=ext)
if plot_quijote:
mtot_vs_maxpairoverlap(0, "quijote", "group_mass", min_logmass,
smoothed, nbins, ext=ext)
if False:
mtot_vs_summedpairoverlap(7444, "csiborg", min_logmass, smoothed,
nbins, ext)
if plot_quijote:
mtot_vs_summedpairoverlap(0, "quijote", min_logmass, smoothed,
nbins, ext)
if False:
mtot_vs_maxoverlap_mass(7444, "csiborg", min_logmass, smoothed,
nbins, min_maxoverlap, ext)
if plot_quijote:
mtot_vs_maxoverlap_mass(0, "quijote", min_logmass, smoothed,
nbins, min_maxoverlap, ext)
if False:
mtot_vs_expected_mass(7444, "csiborg", min_logmass, smoothed, nbins,
min_overlap=0, max_prob_nomatch=1, ext=ext)
if plot_quijote:
mtot_vs_expected_mass(0, "quijote", min_logmass, smoothed, nbins,
min_overlap=0, max_prob_nomatch=1, ext=ext)
if False:
mass_vs_separation(7444, 7444 + 24, "csiborg", min_logmass, nbins,
smoothed, boxsize=677.7, plot_std=False)
if plot_quijote:
mass_vs_separation(0, 1, "quijote", min_logmass, nbins,
smoothed, boxsize=1000, plot_std=False)
if False:
mass_vs_maxoverlap_separation(7444, 7444 + 24, "csiborg", min_logmass,
nbins, smoothed, boxsize=677.7,
plot_std=False)
if plot_quijote:
mass_vs_maxoverlap_separation(
0, 1, "quijote", min_logmass, nbins, smoothed, boxsize=1000,
plot_std=False)
if False:
mtot_vs_mean_max_overlap(7444, "csiborg", min_logmass, smoothed, nbins)
if plot_quijote:
mtot_vs_mean_max_overlap(0, "quijote", min_logmass, smoothed,
nbins)
if False:
key = "lambda200c"
mtot_vs_maxoverlap_property(7444, "csiborg", min_logmass, key,
min_maxoverlap, smoothed)
if plot_quijote:
mtot_vs_maxoverlap_property(0, "quijote", min_logmass, key,
min_maxoverlap, smoothed)
if False:
matching_max_vs_overlap("csiborg", 7444, min_logmass)
if plot_quijote:
matching_max_vs_overlap("quijote", 0, min_logmass)
if True:
mtot_vs_maxpairoverlap_consistency(
7444, "csiborg", "fof_totpartmass", min_logmass, smoothed,
ext="png")
# if plot_quijote:
# mtot_vs_maxpairoverlap_consistency(
# 0, "quijote", "group_mass", min_logmass, smoothed,
# ext="png")