csiborgtools/scripts/match_finsnap.py
Richard Stiskalek eccd8e3507
Add galaxy sampling (#88)
* Improve calculations

* Improve flags

* Add smoothed options

* Remove some old comments

* Edit little things

* Save smoothed

* Move files

* Edit imports

* Edit imports

* Renaming imports

* Renaming imports

* Sort imports

* Sort files

* Sorting

* Optionally make copies of the field

* Add quijote backup check

* Add direct field smoothing

* Shorten stupid documentation

* Shorten stupid docs

* Update conversion

* Add particles to ASCII conversion

* Add a short comment

* Add SDSS uncorrected distance

* Adjust comment

* Add FITS index to galaxies

* Remove spare space

* Remove a stupid line

* Remove blank line

* Make space separated

* Add interpolated field path

* Add field sampling

* Sort imports

* Return density in cells

* Clear out observer velocity

* Add 170817 sampling

* Fix normalization

* Update plot
2023-09-01 16:29:50 +01:00

165 lines
5.5 KiB
Python

# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to find the nearest neighbour of each halo in a given halo catalogue
from the remaining catalogues in the suite (CSIBORG or Quijote). The script is
MPI parallelized over the reference simulations.
"""
from argparse import ArgumentParser
from datetime import datetime
from distutils.util import strtobool
from os import remove
import numpy
import yaml
from mpi4py import MPI
from taskmaster import work_delegation
from tqdm import trange
from utils import open_catalogues
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
def find_neighbour(args, nsim, cats, paths, comm, save_kind):
"""
Find the nearest neighbour of each halo in the given catalogue.
Parameters
----------
args : argparse.Namespace
Command line arguments.
nsim : int
Simulation index.
cats : dict
Dictionary of halo catalogues. Keys are simulation indices, values are
the catalogues.
paths : csiborgtools.paths.Paths
Paths object.
comm : mpi4py.MPI.Comm
MPI communicator.
save_kind : str
Kind of data to save. Must be either `dist` or `bin_dist`.
Returns
-------
None
"""
assert save_kind in ["dist", "bin_dist"]
ndist, cross_hindxs = csiborgtools.match.find_neighbour(nsim, cats)
mass_key = "totpartmass" if args.simname == "csiborg" else "group_mass"
cat0 = cats[nsim]
rdist = cat0.radial_distance(in_initial=False)
# Distance is saved optionally, whereas binned distance is always saved.
if save_kind == "dist":
out = {"ndist": ndist,
"cross_hindxs": cross_hindxs,
"mass": cat0[mass_key],
"ref_hindxs": cat0["index"],
"rdist": rdist}
fout = paths.cross_nearest(args.simname, args.run, "dist", nsim)
if args.verbose:
print(f"Rank {comm.Get_rank()} writing to `{fout}`.", flush=True)
numpy.savez(fout, **out)
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
reader = csiborgtools.summary.NearestNeighbourReader(
paths=paths, **csiborgtools.neighbour_kwargs)
counts = numpy.zeros((reader.nbins_radial, reader.nbins_neighbour),
dtype=numpy.float32)
counts = reader.count_neighbour(counts, ndist, rdist)
out = {"counts": counts}
fout = paths.cross_nearest(args.simname, args.run, "bin_dist", nsim)
if args.verbose:
print(f"Rank {comm.Get_rank()} writing to `{fout}`.", flush=True)
numpy.savez(fout, **out)
def collect_dist(args, paths):
"""
Collect the binned nearest neighbour distances into a single file.
Parameters
----------
args : argparse.Namespace
Command line arguments.
paths : csiborgtools.paths.Paths
Paths object.
Returns
-------
"""
fnames = paths.cross_nearest(args.simname, args.run, "bin_dist")
if args.verbose:
print("Collecting counts into a single file.", flush=True)
for i in trange(len(fnames)) if args.verbose else range(len(fnames)):
fname = fnames[i]
data = numpy.load(fname)
if i == 0:
out = data["counts"]
else:
out += data["counts"]
remove(fname)
fout = paths.cross_nearest(args.simname, args.run, "tot_counts",
nsim=0, nobs=0)
if args.verbose:
print(f"Writing the summed counts to `{fout}`.", flush=True)
numpy.savez(fout, tot_counts=out)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--run", type=str, help="Run name")
parser.add_argument("--simname", type=str, choices=["csiborg", "quijote"],
help="Simulation name")
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="Indices of simulations to cross. If `-1` processes all simulations.") # noqa
parser.add_argument("--Rmax", type=float, default=155/0.705,
help="High-resolution region radius")
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
default=False)
args = parser.parse_args()
with open("./match_finsnap.yml", "r") as file:
config = yaml.safe_load(file)
if args.simname == "csiborg":
save_kind = "dist"
else:
save_kind = "bin_dist"
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cats = open_catalogues(args, config, paths, comm)
def do_work(nsim):
return find_neighbour(args, nsim, cats, paths, comm, save_kind)
work_delegation(do_work, list(cats.keys()), comm,
master_verbose=args.verbose)
comm.Barrier()
if rank == 0:
collect_dist(args, paths)
print(f"{datetime.now()}: all finished. Quitting.")