mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:28:03 +00:00
282 lines
12 KiB
Python
282 lines
12 KiB
Python
# Copyright (C) 2024 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Script to run the PV validation model on various catalogues and simulations.
|
|
The script is not MPI parallelised, instead it is best run on a GPU.
|
|
"""
|
|
from argparse import ArgumentParser, ArgumentTypeError
|
|
|
|
|
|
def none_or_int(value):
|
|
if value.lower() == "none":
|
|
return None
|
|
try:
|
|
return int(value)
|
|
except ValueError:
|
|
raise ArgumentTypeError(f"Invalid value: {value}. Must be an integer or 'none'.") # noqa
|
|
|
|
|
|
def parse_args():
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--simname", type=str, required=True,
|
|
help="Simulation name.")
|
|
parser.add_argument("--catalogue", type=str, required=True,
|
|
help="PV catalogue.")
|
|
parser.add_argument("--ksmooth", type=int, default=1,
|
|
help="Smoothing index.")
|
|
parser.add_argument("--ksim", type=none_or_int, default=None,
|
|
help="IC iteration number. If 'None', all IC realizations are used.") # noqa
|
|
parser.add_argument("--ndevice", type=int, default=1,
|
|
help="Number of devices to request.")
|
|
parser.add_argument("--device", type=str, default="cpu",
|
|
help="Device to use.")
|
|
return parser.parse_args()
|
|
|
|
|
|
ARGS = parse_args()
|
|
# This must be done before we import JAX etc.
|
|
from numpyro import set_host_device_count, set_platform # noqa
|
|
|
|
set_platform(ARGS.device) # noqa
|
|
set_host_device_count(ARGS.ndevice) # noqa
|
|
|
|
import sys # noqa
|
|
from os.path import join # noqa
|
|
|
|
import csiborgtools # noqa
|
|
import jax # noqa
|
|
from h5py import File # noqa
|
|
from mpi4py import MPI # noqa
|
|
from numpyro.infer import MCMC, NUTS, Predictive, init_to_median # noqa
|
|
|
|
|
|
def print_variables(names, variables):
|
|
for name, variable in zip(names, variables):
|
|
print(f"{name:<20} {variable}", flush=True)
|
|
print(flush=True)
|
|
|
|
|
|
def get_model(paths, get_model_kwargs, verbose=True):
|
|
"""Load the data and create the NumPyro model."""
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
folder = "/mnt/extraspace/rstiskalek/catalogs/"
|
|
|
|
nsims = paths.get_ics(ARGS.simname)
|
|
if ARGS.ksim is None:
|
|
nsim_iterator = [i for i in range(len(nsims))]
|
|
else:
|
|
nsim_iterator = [ARGS.ksim]
|
|
nsims = [nsims[ARGS.ksim]]
|
|
|
|
if verbose:
|
|
print(f"{'Simulation:':<20} {ARGS.simname}")
|
|
print(f"{'Catalogue:':<20} {ARGS.catalogue}")
|
|
print(f"{'Num. realisations:':<20} {len(nsims)}")
|
|
print(flush=True)
|
|
|
|
if ARGS.catalogue == "A2":
|
|
fpath = join(folder, "A2.h5")
|
|
elif ARGS.catalogue in ["LOSS", "Foundation", "Pantheon+", "SFI_gals",
|
|
"2MTF", "SFI_groups", "SFI_gals_masked",
|
|
"Pantheon+_groups", "Pantheon+_groups_zSN",
|
|
"Pantheon+_zSN"]:
|
|
fpath = join(folder, "PV_compilation.hdf5")
|
|
else:
|
|
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")
|
|
|
|
loader = csiborgtools.flow.DataLoader(ARGS.simname, nsim_iterator,
|
|
ARGS.catalogue, fpath, paths,
|
|
ksmooth=ARGS.ksmooth)
|
|
|
|
return csiborgtools.flow.get_model(loader, **get_model_kwargs)
|
|
|
|
|
|
def get_harmonic_evidence(samples, log_posterior, nchains_harmonic, epoch_num):
|
|
"""Compute evidence using the `harmonic` package."""
|
|
data, names = csiborgtools.dict_samples_to_array(samples)
|
|
data = data.reshape(nchains_harmonic, -1, len(names))
|
|
log_posterior = log_posterior.reshape(10, -1)
|
|
|
|
return csiborgtools.harmonic_evidence(
|
|
data, log_posterior, return_flow_samples=False, epochs_num=epoch_num)
|
|
|
|
|
|
def get_simulation_weights(samples, model, model_kwargs):
|
|
"""Get the weights per posterior samples for each simulation."""
|
|
predictive = Predictive(model, samples)
|
|
ll_all = predictive(
|
|
jax.random.PRNGKey(1), store_ll_all=True, **model_kwargs)["ll_all"]
|
|
|
|
# Multiply the likelihood of galaxies
|
|
ll_per_simulation = jax.numpy.sum(ll_all, axis=-1)
|
|
# Normalization by summing the likelihood over simulations
|
|
norm = jax.scipy.special.logsumexp(ll_per_simulation, axis=-1)
|
|
return ll_per_simulation - norm[:, None]
|
|
|
|
|
|
def run_model(model, nsteps, nburn, model_kwargs, out_folder, sample_beta,
|
|
calculate_evidence, nchains_harmonic, epoch_num, kwargs_print):
|
|
"""Run the NumPyro model and save output to a file."""
|
|
try:
|
|
ndata = model.ndata
|
|
except AttributeError as e:
|
|
raise AttributeError("The model must have an attribute `ndata` "
|
|
"indicating the number of data points.") from e
|
|
|
|
nuts_kernel = NUTS(model, init_strategy=init_to_median(num_samples=1000))
|
|
mcmc = MCMC(nuts_kernel, num_warmup=nburn, num_samples=nsteps)
|
|
rng_key = jax.random.PRNGKey(42)
|
|
|
|
mcmc.run(rng_key, extra_fields=("potential_energy",), **model_kwargs)
|
|
samples = mcmc.get_samples()
|
|
simulation_weights = get_simulation_weights(samples, model, model_kwargs)
|
|
|
|
log_posterior = -mcmc.get_extra_fields()["potential_energy"]
|
|
log_likelihood = samples.pop("ll_values")
|
|
if log_likelihood is None:
|
|
raise ValueError("The samples must contain the log likelihood values under the key `ll_values`.") # noqa
|
|
|
|
BIC, AIC = csiborgtools.BIC_AIC(samples, log_likelihood, ndata)
|
|
print(f"{'BIC':<20} {BIC}")
|
|
print(f"{'AIC':<20} {AIC}")
|
|
mcmc.print_summary()
|
|
|
|
if calculate_evidence:
|
|
print("Calculating the evidence using `harmonic`.", flush=True)
|
|
neg_ln_evidence, neg_ln_evidence_err = get_harmonic_evidence(
|
|
samples, log_posterior, nchains_harmonic, epoch_num)
|
|
print(f"{'-ln(Z)':<20} {neg_ln_evidence}")
|
|
print(f"{'-ln(Z) error':<20} {neg_ln_evidence_err}")
|
|
else:
|
|
neg_ln_evidence = jax.numpy.nan
|
|
neg_ln_evidence_err = (jax.numpy.nan, jax.numpy.nan)
|
|
|
|
fname = f"samples_{ARGS.simname}_{ARGS.catalogue}_ksmooth{ARGS.ksmooth}.hdf5" # noqa
|
|
if ARGS.ksim is not None:
|
|
fname = fname.replace(".hdf5", f"_nsim{ARGS.ksim}.hdf5")
|
|
|
|
if sample_beta:
|
|
fname = fname.replace(".hdf5", "_sample_beta.hdf5")
|
|
|
|
fname = join(out_folder, fname)
|
|
print(f"Saving results to `{fname}`.")
|
|
with File(fname, "w") as f:
|
|
# Write samples
|
|
grp = f.create_group("samples")
|
|
for key, value in samples.items():
|
|
grp.create_dataset(key, data=value)
|
|
|
|
# Write log likelihood and posterior
|
|
f.create_dataset("log_likelihood", data=log_likelihood)
|
|
f.create_dataset("log_posterior", data=log_posterior)
|
|
f.create_dataset("simulation_weights", data=simulation_weights)
|
|
|
|
# Write goodness of fit
|
|
grp = f.create_group("gof")
|
|
grp.create_dataset("BIC", data=BIC)
|
|
grp.create_dataset("AIC", data=AIC)
|
|
grp.create_dataset("neg_lnZ", data=neg_ln_evidence)
|
|
grp.create_dataset("neg_lnZ_err", data=neg_ln_evidence_err)
|
|
|
|
fname_summary = fname.replace(".hdf5", ".txt")
|
|
print(f"Saving summary to `{fname_summary}`.")
|
|
with open(fname_summary, 'w') as f:
|
|
original_stdout = sys.stdout
|
|
sys.stdout = f
|
|
|
|
print("User parameters:")
|
|
for kwargs in kwargs_print:
|
|
print_variables(kwargs.keys(), kwargs.values())
|
|
|
|
print("HMC summary:")
|
|
print(f"{'BIC':<20} {BIC}")
|
|
print(f"{'AIC':<20} {AIC}")
|
|
print(f"{'-ln(Z)':<20} {neg_ln_evidence}")
|
|
print(f"{'-ln(Z) error':<20} {neg_ln_evidence_err}")
|
|
mcmc.print_summary(exclude_deterministic=False)
|
|
sys.stdout = original_stdout
|
|
|
|
|
|
###############################################################################
|
|
# Command line interface #
|
|
###############################################################################
|
|
|
|
|
|
if __name__ == "__main__":
|
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
out_folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity" # noqa
|
|
print(f"{'Num. devices:':<20} {jax.device_count()}")
|
|
print(f"{'Devices:':<20} {jax.devices()}")
|
|
|
|
###########################################################################
|
|
# Fixed user parameters #
|
|
###########################################################################
|
|
|
|
nsteps = 5000
|
|
nburn = 1000
|
|
zcmb_max = 0.06
|
|
sample_alpha = True
|
|
sample_beta = True
|
|
calculate_evidence = False
|
|
nchains_harmonic = 10
|
|
num_epochs = 30
|
|
|
|
if nsteps % nchains_harmonic != 0:
|
|
raise ValueError("The number of steps must be divisible by the number of chains.") # noqa
|
|
|
|
main_params = {"nsteps": nsteps, "nburn": nburn, "zcmb_max": zcmb_max,
|
|
"sample_alpha": sample_alpha, "sample_beta": sample_beta,
|
|
"calculate_evidence": calculate_evidence,
|
|
"nchains_harmonic": nchains_harmonic,
|
|
"num_epochs": num_epochs}
|
|
print_variables(main_params.keys(), main_params.values())
|
|
|
|
calibration_hyperparams = {"Vext_std": 250,
|
|
"alpha_mean": 1.0, "alpha_std": 0.5,
|
|
"beta_mean": 1.0, "beta_std": 0.5,
|
|
"sigma_v_mean": 200., "sigma_v_std": 100.,
|
|
"sample_alpha": sample_alpha,
|
|
"sample_beta": sample_beta,
|
|
}
|
|
print_variables(
|
|
calibration_hyperparams.keys(), calibration_hyperparams.values())
|
|
|
|
if ARGS.catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
|
|
distmod_hyperparams = {"e_mu_mean": 0.1, "e_mu_std": 0.05,
|
|
"mag_cal_mean": -18.25, "mag_cal_std": 0.5,
|
|
"alpha_cal_mean": 0.148, "alpha_cal_std": 0.05,
|
|
"beta_cal_mean": 3.112, "beta_cal_std": 1.0,
|
|
}
|
|
elif ARGS.catalogue in ["SFI_gals", "2MTF"]:
|
|
distmod_hyperparams = {"e_mu_mean": 0.3, "e_mu_std": 0.15,
|
|
"a_mean": -21., "a_std": 0.5,
|
|
"b_mean": -5.95, "b_std": 0.25,
|
|
}
|
|
else:
|
|
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")
|
|
|
|
print_variables(
|
|
distmod_hyperparams.keys(), distmod_hyperparams.values())
|
|
|
|
kwargs_print = (main_params, calibration_hyperparams, distmod_hyperparams)
|
|
###########################################################################
|
|
|
|
model_kwargs = {"calibration_hyperparams": calibration_hyperparams,
|
|
"distmod_hyperparams": distmod_hyperparams}
|
|
get_model_kwargs = {"zcmb_max": zcmb_max}
|
|
|
|
model = get_model(paths, get_model_kwargs, )
|
|
run_model(model, nsteps, nburn, model_kwargs, out_folder, sample_beta,
|
|
calculate_evidence, nchains_harmonic, num_epochs, kwargs_print)
|