mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-04-18 23:40:54 +00:00
341 lines
12 KiB
Python
341 lines
12 KiB
Python
# Copyright (C) 2022 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Tools for interpolating 3D fields at arbitrary positions.
|
|
"""
|
|
import MAS_library as MASL
|
|
import numpy
|
|
from numba import jit
|
|
from tqdm import trange, tqdm
|
|
|
|
from .utils import force_single_precision, smoothen_field
|
|
from ..utils import periodic_wrap_grid, radec_to_cartesian
|
|
|
|
|
|
###############################################################################
|
|
# Cartesian interpolation #
|
|
###############################################################################
|
|
|
|
|
|
def evaluate_cartesian(*fields, pos, smooth_scales=None, verbose=False):
|
|
"""
|
|
Evaluate a scalar field(s) at Cartesian coordinates `pos`.
|
|
|
|
Parameters
|
|
----------
|
|
field : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
|
Fields to be interpolated.
|
|
pos : 2-dimensional array of shape `(n_samples, 3)`
|
|
Query positions in box units.
|
|
smooth_scales : (list of) float, optional
|
|
Smoothing scales in box units. If `None`, no smoothing is performed.
|
|
verbose : bool, optional
|
|
Smoothing verbosity flag.
|
|
|
|
Returns
|
|
-------
|
|
(list of) 1-dimensional array of shape `(n_samples, len(smooth_scales))`
|
|
"""
|
|
pos = force_single_precision(pos)
|
|
|
|
if isinstance(smooth_scales, (int, float)):
|
|
smooth_scales = [smooth_scales]
|
|
|
|
if smooth_scales is None:
|
|
shape = (pos.shape[0],)
|
|
else:
|
|
shape = (pos.shape[0], len(smooth_scales))
|
|
|
|
interp_fields = [numpy.full(shape, numpy.nan, dtype=numpy.float32)
|
|
for __ in range(len(fields))]
|
|
|
|
for i, field in enumerate(fields):
|
|
if smooth_scales is None:
|
|
MASL.CIC_interp(field, 1., pos, interp_fields[i])
|
|
else:
|
|
desc = f"Smoothing and interpolating field {i + 1}/{len(fields)}"
|
|
iterator = tqdm(smooth_scales, desc=desc, disable=not verbose)
|
|
|
|
for j, scale in enumerate(iterator):
|
|
if not scale > 0:
|
|
fsmooth = numpy.copy(field)
|
|
else:
|
|
fsmooth = smoothen_field(field, scale, 1., make_copy=True)
|
|
MASL.CIC_interp(fsmooth, 1., pos, interp_fields[i][:, j])
|
|
|
|
if len(fields) == 1:
|
|
return interp_fields[0]
|
|
|
|
return interp_fields
|
|
|
|
|
|
def observer_peculiar_velocity(velocity_field, smooth_scales=None,
|
|
observer=None, verbose=True):
|
|
"""
|
|
Calculate the peculiar velocity in the centre of the box.
|
|
|
|
Parameters
|
|
----------
|
|
velocity_field : 4-dimensional array of shape `(3, grid, grid, grid)`
|
|
Velocity field in `km / s`.
|
|
smooth_scales : (list of) float, optional
|
|
Smoothing scales in box units. If `None`, no smoothing is performed.
|
|
observer : 1-dimensional array of shape `(3,)`, optional
|
|
Observer position in box units. If `None`, the observer is assumed to
|
|
be in the centre of the box.
|
|
verbose : bool, optional
|
|
Smoothing verbosity flag.
|
|
|
|
Returns
|
|
-------
|
|
vpec : 1-dimensional array of shape `(3,)` or `(len(smooth_scales), 3)`
|
|
"""
|
|
if observer is None:
|
|
pos = numpy.asanyarray([0.5, 0.5, 0.5]).reshape(1, 3)
|
|
else:
|
|
pos = numpy.asanyarray(observer).reshape(1, 3)
|
|
|
|
vx, vy, vz = evaluate_cartesian(
|
|
*velocity_field, pos=pos, smooth_scales=smooth_scales, verbose=verbose)
|
|
|
|
# Reshape since we evaluated only one point
|
|
vx = vx.reshape(-1, )
|
|
vy = vy.reshape(-1, )
|
|
vz = vz.reshape(-1, )
|
|
|
|
if smooth_scales is None:
|
|
return numpy.array([vx[0], vy[0], vz[0]])
|
|
|
|
return numpy.vstack([vx, vy, vz]).T
|
|
|
|
|
|
###############################################################################
|
|
# Sky maps #
|
|
###############################################################################
|
|
|
|
|
|
def evaluate_sky(*fields, pos, mpc2box, smooth_scales=None, verbose=False):
|
|
"""
|
|
Evaluate a scalar field(s) at radial distance `Mpc / h`, right ascensions
|
|
[0, 360) deg and declinations [-90, 90] deg.
|
|
|
|
Parameters
|
|
----------
|
|
fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
|
Field to be interpolated.
|
|
pos : 2-dimensional array of shape `(n_samples, 3)`
|
|
Query spherical coordinates.
|
|
mpc2box : float
|
|
Conversion factor to multiply the radial distance by to get box units.
|
|
smooth_scales : (list of) float, optional
|
|
Smoothing scales in `Mpc / h`. If `None`, no smoothing is performed.
|
|
verbose : bool, optional
|
|
Smoothing verbosity flag.
|
|
|
|
Returns
|
|
-------
|
|
(list of) 1-dimensional array of shape `(n_samples, len(smooth_scales))`
|
|
"""
|
|
# Make a copy of the positions to avoid modifying the input.
|
|
pos = numpy.copy(pos)
|
|
|
|
pos = force_single_precision(pos)
|
|
pos[:, 0] *= mpc2box
|
|
|
|
cart_pos = radec_to_cartesian(pos) + 0.5
|
|
|
|
if smooth_scales is not None:
|
|
if isinstance(smooth_scales, (int, float)):
|
|
smooth_scales = [smooth_scales]
|
|
|
|
if isinstance(smooth_scales, list):
|
|
smooth_scales = numpy.array(smooth_scales, dtype=numpy.float32)
|
|
|
|
smooth_scales *= mpc2box
|
|
|
|
return evaluate_cartesian(*fields, pos=cart_pos,
|
|
smooth_scales=smooth_scales, verbose=verbose)
|
|
|
|
|
|
def make_sky(field, angpos, dist, boxsize, volume_weight=True, verbose=True):
|
|
r"""
|
|
Make a sky map of a scalar field. The observer is in the centre of the
|
|
box the field is evaluated along directions `angpos` (RA [0, 360) deg,
|
|
dec [-90, 90] deg). Along each direction, the field is evaluated distances
|
|
`dist` (`Mpc / h`) and summed. Uses CIC interpolation.
|
|
|
|
Parameters
|
|
----------
|
|
field : 3-dimensional array of shape `(grid, grid, grid)`
|
|
Field to be interpolated
|
|
angpos : 2-dimensional arrays of shape `(ndir, 2)`
|
|
Directions to evaluate the field.
|
|
dist : 1-dimensional array
|
|
Uniformly spaced radial distances to evaluate the field in `Mpc / h`.
|
|
boxsize : float
|
|
Box size in `Mpc / h`.
|
|
volume_weight : bool, optional
|
|
Whether to weight the field by the volume of the pixel.
|
|
verbose : bool, optional
|
|
Verbosity flag.
|
|
|
|
Returns
|
|
-------
|
|
interp_field : 1-dimensional array of shape `(n_pos, )`.
|
|
"""
|
|
dx = dist[1] - dist[0]
|
|
assert numpy.allclose(dist[1:] - dist[:-1], dx)
|
|
assert angpos.ndim == 2 and dist.ndim == 1
|
|
|
|
# We loop over the angular directions, at each step evaluating a vector
|
|
# of distances. We pre-allocate arrays for speed.
|
|
dir_loop = numpy.full((dist.size, 3), numpy.nan, dtype=numpy.float32)
|
|
|
|
ndir = angpos.shape[0]
|
|
out = numpy.full(ndir, numpy.nan, dtype=numpy.float32)
|
|
for i in trange(ndir) if verbose else range(ndir):
|
|
dir_loop[:, 0] = dist
|
|
dir_loop[:, 1] = angpos[i, 0]
|
|
dir_loop[:, 2] = angpos[i, 1]
|
|
if volume_weight:
|
|
out[i] = numpy.sum(
|
|
dist**2
|
|
* evaluate_sky(field, pos=dir_loop, mpc2box=1 / boxsize))
|
|
else:
|
|
out[i] = numpy.sum(
|
|
evaluate_sky(field, pos=dir_loop, mpc2box=1 / boxsize))
|
|
out *= dx
|
|
return out
|
|
|
|
|
|
###############################################################################
|
|
# Real-to-redshift space field dragging #
|
|
###############################################################################
|
|
|
|
|
|
@jit(nopython=True)
|
|
def make_gridpos(grid_size):
|
|
"""Make a regular grid of positions and distances from the center."""
|
|
grid_pos = numpy.full((grid_size**3, 3), numpy.nan, dtype=numpy.float32)
|
|
grid_dist = numpy.full(grid_size**3, numpy.nan, dtype=numpy.float32)
|
|
|
|
n = 0
|
|
for i in range(grid_size):
|
|
px = (i - 0.5 * (grid_size - 1)) / grid_size
|
|
px2 = px**2
|
|
for j in range(grid_size):
|
|
py = (j - 0.5 * (grid_size - 1)) / grid_size
|
|
py2 = py**2
|
|
for k in range(grid_size):
|
|
pz = (k - 0.5 * (grid_size - 1)) / grid_size
|
|
pz2 = pz**2
|
|
|
|
grid_pos[n, 0] = px
|
|
grid_pos[n, 1] = py
|
|
grid_pos[n, 2] = pz
|
|
|
|
grid_dist[n] = (px2 + py2 + pz2)**0.5
|
|
|
|
n += 1
|
|
|
|
return grid_pos, grid_dist
|
|
|
|
|
|
def field2rsp(field, radvel_field, box, MAS, init_value=0.):
|
|
"""
|
|
Forward model a real space scalar field to redshift space.
|
|
|
|
Parameters
|
|
----------
|
|
field : 3-dimensional array of shape `(grid, grid, grid)`
|
|
Real space field to be evolved to redshift space.
|
|
radvel_field : 3-dimensional array of shape `(grid, grid, grid)`
|
|
Radial velocity field in `km / s`. Expected to account for the observer
|
|
velocity.
|
|
box : :py:class:`csiborgtools.read.CSiBORG1Box`
|
|
The simulation box information and transformations.
|
|
MAS : str
|
|
Mass assignment. Must be one of `NGP`, `CIC`, `TSC` or `PCS`.
|
|
init_value : float, optional
|
|
Initial value of the RSP field on the grid.
|
|
|
|
Returns
|
|
-------
|
|
3-dimensional array of shape `(grid, grid, grid)`
|
|
"""
|
|
grid = field.shape[0]
|
|
H0_inv = 1. / 100 / box.box2mpc(1.)
|
|
|
|
# Calculate the regular grid positions and distances from the center.
|
|
grid_pos, grid_dist = make_gridpos(grid)
|
|
grid_dist = grid_dist.reshape(-1, 1)
|
|
|
|
# Move the grid positions to redshift space.
|
|
grid_pos *= (1 + H0_inv * radvel_field.reshape(-1, 1) / grid_dist)
|
|
grid_pos += 0.5
|
|
grid_pos = periodic_wrap_grid(grid_pos)
|
|
|
|
rsp_field = numpy.full(field.shape, init_value, dtype=numpy.float32)
|
|
cell_counts = numpy.zeros(rsp_field.shape, dtype=numpy.float32)
|
|
|
|
# Interpolate the field to the grid positions.
|
|
MASL.MA(grid_pos, rsp_field, 1., MAS, W=field.reshape(-1,))
|
|
MASL.MA(grid_pos, cell_counts, 1., MAS)
|
|
divide_nonzero(rsp_field, cell_counts)
|
|
|
|
return rsp_field
|
|
|
|
###############################################################################
|
|
# Supplementary function #
|
|
###############################################################################
|
|
|
|
|
|
@jit(nopython=True)
|
|
def divide_nonzero(field0, field1):
|
|
"""
|
|
Perform in-place `field0 /= field1` but only where `field1 != 0`.
|
|
"""
|
|
assert field0.shape == field1.shape, "Field shapes must match."
|
|
|
|
imax, jmax, kmax = field0.shape
|
|
for i in range(imax):
|
|
for j in range(jmax):
|
|
for k in range(kmax):
|
|
if field1[i, j, k] != 0:
|
|
field0[i, j, k] /= field1[i, j, k]
|
|
|
|
|
|
@jit(nopython=True)
|
|
def fill_outside(field, fill_value, rmax, boxsize):
|
|
"""
|
|
Fill cells outside of a sphere of radius `rmax` around the box centre with
|
|
`fill_value`.
|
|
"""
|
|
imax, jmax, kmax = field.shape
|
|
assert imax == jmax == kmax
|
|
N = imax
|
|
|
|
# Squared radial distance from the center of the box in box units.
|
|
rmax_box2 = (N * rmax / boxsize)**2
|
|
|
|
for i in range(N):
|
|
idist2 = (i - 0.5 * (N - 1))**2
|
|
for j in range(N):
|
|
jdist2 = (j - 0.5 * (N - 1))**2
|
|
for k in range(N):
|
|
kdist2 = (k - 0.5 * (N - 1))**2
|
|
if idist2 + jdist2 + kdist2 > rmax_box2:
|
|
field[i, j, k] = fill_value
|
|
return field
|