mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-04 01:04:14 +00:00
9e4b34f579
* Update README * Update density field reader * Update name of SDSSxALFAFA * Fix quick bug * Add little fixes * Update README * Put back fit_init * Add paths to initial snapshots * Add export * Remove some choices * Edit README * Add Jens' comments * Organize imports * Rename snapshot * Add additional print statement * Add paths to initial snapshots * Add masses to the initial files * Add normalization * Edit README * Update README * Fix bug in CSiBORG1 so that does not read fof_00001 * Edit README * Edit README * Overwrite comments * Add paths to init lag * Fix Quijote path * Add lagpatch * Edit submits * Update README * Fix numpy int problem * Update README * Add a flag to keep the snapshots open when fitting * Add a flag to keep snapshots open * Comment out some path issue * Keep snapshots open * Access directly snasphot * Add lagpatch for CSiBORG2 * Add treatment of x-z coordinates flipping * Add radial velocity field loader * Update README * Add lagpatch to Quijote * Fix typo * Add setter * Fix typo * Update README * Add output halo cat as ASCII * Add import * Add halo plot * Update README * Add evaluating field at radial distanfe * Add field shell evaluation * Add enclosed mass computation * Add BORG2 import * Add BORG boxsize * Add BORG paths * Edit run * Add BORG2 overdensity field * Add bulk flow clauclation * Update README * Add new plots * Add nbs * Edit paper * Update plotting * Fix overlap paths to contain simname * Add normalization of positions * Add default paths to CSiBORG1 * Add overlap path simname * Fix little things * Add CSiBORG2 catalogue * Update README * Add import * Add TNG density field constructor * Add TNG density * Add draft of calculating BORG ACL * Fix bug * Add ACL of enclosed density * Add nmean acl * Add galaxy bias calculation * Add BORG acl notebook * Add enclosed mass calculation * Add TNG300-1 dir * Add TNG300 and BORG1 dir * Update nb
234 lines
7.8 KiB
Python
234 lines
7.8 KiB
Python
# Copyright (C) 2022 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""
|
|
Utility functions for scripts.
|
|
"""
|
|
from datetime import datetime
|
|
|
|
import numpy
|
|
|
|
from tqdm import tqdm
|
|
|
|
try:
|
|
import csiborgtools
|
|
except ModuleNotFoundError:
|
|
import sys
|
|
sys.path.append("../")
|
|
import csiborgtools
|
|
|
|
|
|
###############################################################################
|
|
# Reading functions #
|
|
###############################################################################
|
|
|
|
|
|
def get_nsims(args, paths):
|
|
"""
|
|
Get simulation indices from the command line arguments.
|
|
"""
|
|
if args.nsims is None or args.nsims[0] == -1:
|
|
nsims = paths.get_ics(args.simname)
|
|
else:
|
|
nsims = args.nsims
|
|
return list(nsims)
|
|
|
|
|
|
def read_single_catalogue(args, config, nsim, run, rmax, paths, nobs=None):
|
|
"""
|
|
Read a single halo catalogue and apply selection criteria to it.
|
|
|
|
Parameters
|
|
----------
|
|
args : argparse.Namespace
|
|
Command line arguments. Must include `simname`.
|
|
config : dict
|
|
Configuration dictionary.
|
|
nsim : int
|
|
Simulation index.
|
|
run : str
|
|
Run name.
|
|
rmax : float
|
|
Maximum radial distance of the halo catalogue.
|
|
paths : csiborgtools.paths.Paths
|
|
Paths object.
|
|
nobs : int, optional
|
|
Fiducial Quijote observer index.
|
|
|
|
Returns
|
|
-------
|
|
instance of `csiborgtools.read.BaseCatalogue`
|
|
"""
|
|
selection = config.get(run, None)
|
|
if selection is None:
|
|
raise KeyError(f"No configuration for run {run}.")
|
|
# We first read the full catalogue without applying any bounds.
|
|
if args.simname == "csiborg":
|
|
cat = csiborgtools.read.CSiBORGHaloCatalogue(
|
|
nsim, paths, load_fitted=True, load_inital=True,
|
|
with_lagpatch=False)
|
|
else:
|
|
if args.from_quijote_backup:
|
|
load_fitted = False
|
|
load_initial = False
|
|
|
|
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
|
nsim, paths, nsnap=4, load_fitted=load_fitted,
|
|
load_initial=load_initial, with_lagpatch=False,
|
|
load_backup=args.from_quijote_backup)
|
|
if nobs is not None:
|
|
# We may optionally already here pick a fiducial observer.
|
|
cat = cat.pick_fiducial_observer(nobs, args.Rmax)
|
|
|
|
cat.apply_bounds({"dist": (0, rmax)})
|
|
# We then first read off the primary selection bounds.
|
|
sel = selection["primary"]
|
|
pname = None
|
|
xs = sel["name"] if isinstance(sel["name"], list) else [sel["name"]]
|
|
for _name in xs:
|
|
if _name in cat.keys:
|
|
pname = _name
|
|
if pname is None:
|
|
raise KeyError(f"Invalid names `{sel['name']}`.")
|
|
xmin = sel.get("min", None)
|
|
xmax = sel.get("max", None)
|
|
if sel.get("islog", False):
|
|
xmin = 10**xmin if xmin is not None else None
|
|
xmax = 10**xmax if xmax is not None else None
|
|
cat.apply_bounds({pname: (xmin, xmax)})
|
|
|
|
# Now the secondary selection bounds. If needed transfrom the secondary
|
|
# property before applying the bounds.
|
|
if "secondary" in selection:
|
|
sel = selection["secondary"]
|
|
sname = None
|
|
xs = sel["name"] if isinstance(sel["name"], list) else [sel["name"]]
|
|
for _name in xs:
|
|
if _name in cat.keys:
|
|
sname = _name
|
|
if sname is None:
|
|
raise KeyError(f"Invalid names `{sel['name']}`.")
|
|
|
|
if sel.get("toperm", False):
|
|
cat[sname] = numpy.random.permutation(cat[sname])
|
|
|
|
if sel.get("marked", False):
|
|
cat[sname] = csiborgtools.clustering.normalised_marks(
|
|
cat[pname], cat[sname], nbins=config["nbins_marks"])
|
|
cat.apply_bounds({sname: (sel.get("min", None), sel.get("max", None))})
|
|
|
|
return cat
|
|
|
|
|
|
def open_catalogues(args, config, paths, comm):
|
|
"""
|
|
Read all halo catalogues on the zeroth rank and broadcast them to all
|
|
higher ranks.
|
|
|
|
Parameters
|
|
----------
|
|
args : argparse.Namespace
|
|
Command line arguments.
|
|
config : dict
|
|
Configuration dictionary.
|
|
paths : csiborgtools.paths.Paths
|
|
Paths object.
|
|
comm : mpi4py.MPI.Comm
|
|
MPI communicator.
|
|
|
|
Returns
|
|
-------
|
|
cats : dict
|
|
Dictionary of halo catalogues. Keys are simulation indices, values are
|
|
the catalogues.
|
|
"""
|
|
nsims = get_nsims(args, paths)
|
|
rank = comm.Get_rank()
|
|
nproc = comm.Get_size()
|
|
|
|
if args.verbose and rank == 0:
|
|
print(f"{datetime.now()}: opening catalogues.", flush=True)
|
|
|
|
# We first load all catalogues on the zeroth rank and broadcast their
|
|
# names.
|
|
if rank == 0:
|
|
cats = {}
|
|
if args.simname == "csiborg":
|
|
for nsim in tqdm(nsims) if args.verbose else nsims:
|
|
cat = read_single_catalogue(args, config, nsim, args.run,
|
|
rmax=args.Rmax, paths=paths)
|
|
cats.update({nsim: cat})
|
|
else:
|
|
for nsim in tqdm(nsims) if args.verbose else nsims:
|
|
ref_cat = read_single_catalogue(args, config, nsim, args.run,
|
|
rmax=None, paths=paths)
|
|
|
|
nmax = int(ref_cat.box.boxsize // (2 * args.Rmax))**3
|
|
for nobs in range(nmax):
|
|
name = paths.quijote_fiducial_nsim(nsim, nobs)
|
|
cat = ref_cat.pick_fiducial_observer(nobs, rmax=args.Rmax)
|
|
cats.update({name: cat})
|
|
names = list(cats.keys())
|
|
if nproc > 1:
|
|
for i in range(1, nproc):
|
|
comm.send(names, dest=i, tag=nproc + i)
|
|
else:
|
|
names = comm.recv(source=0, tag=nproc + rank)
|
|
|
|
comm.Barrier()
|
|
# We then broadcast the catalogues to all ranks, one-by-one as MPI can
|
|
# only pass messages smaller than 2GB.
|
|
if nproc == 1:
|
|
return cats
|
|
|
|
if rank > 0:
|
|
cats = {}
|
|
for name in names:
|
|
if rank == 0:
|
|
for i in range(1, nproc):
|
|
comm.send(cats[name], dest=i, tag=nproc + i)
|
|
else:
|
|
cats.update({name: comm.recv(source=0, tag=nproc + rank)})
|
|
return cats
|
|
|
|
|
|
###############################################################################
|
|
# Clusters #
|
|
###############################################################################
|
|
|
|
_coma = {"RA": (12 + 59 / 60 + 48.7 / 60**2) * 15,
|
|
"DEC": 27 + 58 / 60 + 50 / 60**2,
|
|
"COMDIST": 102.975}
|
|
|
|
_virgo = {"RA": (12 + 27 / 60) * 15,
|
|
"DEC": 12 + 43 / 60,
|
|
"COMDIST": 16.5}
|
|
|
|
specific_clusters = {"Coma": _coma, "Virgo": _virgo}
|
|
|
|
###############################################################################
|
|
# Surveys #
|
|
###############################################################################
|
|
|
|
|
|
class SDSS:
|
|
@staticmethod
|
|
def steps(cls):
|
|
return [(lambda x: cls[x], ("IN_DR7_LSS",)),
|
|
(lambda x: cls[x] < 17.6, ("ELPETRO_APPMAG_r", )),
|
|
(lambda x: cls[x] < 155, ("DIST", ))
|
|
]
|
|
|
|
def __call__(self):
|
|
return csiborgtools.read.SDSS(h=1, sel_steps=self.steps)
|