csiborgtools/scripts/post_upglade.py
Richard Stiskalek 779f2e76ac
Calculate upglade redshifts (#128)
* Update redshift reading

* Add helio to CMB redshift

* Update imports

* Update nb

* Run for Quijote

* Add script

* Update

* Update .gitignore

* Update imports

* Add Peery estimator

* Add bulk flow scripts

* Update typs

* Add comment

* Add blank space

* Update submission script

* Update description

* Add barriers

* Update nb

* Update nb

* Rename script

* Move to old

* Update imports

* Add nb

* Update script

* Fix catalogue key

* Update script

* Update submit

* Update comment

* Update .gitignore

* Update nb

* Update for stationary obsrevers

* Update submission

* Add nb

* Add better verbose control

* Update nb

* Update submit

* Update nb

* Add SN errors

* Add draft of the script

* Update verbosity flags

* Add submission script

* Debug script

* Quickfix

* Remove comment

* Update nb

* Update submission

* Update nb

* Processed UPGLADE
2024-06-20 14:33:00 +01:00

162 lines
6 KiB
Python

# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to calculate cosmological redshifts from observed redshifts assuming
the Carrick+2015 peculiar velocity model. In the future this may be extended
to include other peculiar velocity models.
"""
from datetime import datetime
from os import remove
from os.path import join
import csiborgtools
import numpy as np
from h5py import File
from mpi4py import MPI
from taskmaster import work_delegation # noqa
from tqdm import tqdm
SPEED_OF_LIGHT = 299792.458 # km / s
def t():
return datetime.now().strftime("%H:%M:%S")
def load_calibration(catalogue, simname, nsim, ksmooth, verbose=False):
"""Load the pre-computed calibration samples."""
fname = f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_{catalogue}_{simname}_smooth_{ksmooth}.hdf5" # noqa
keys = ["Vext_x", "Vext_y", "Vext_z", "alpha", "beta", "sigma_v"]
calibration_samples = {}
with File(fname, 'r') as f:
for key in keys:
# NOTE: here the posterior samples are down-sampled
calibration_samples[key] = f[f"sim_{nsim}/{key}"][:][::10]
if verbose:
k = list(calibration_samples.keys())[0]
nsamples = len(calibration_samples[k])
print(f"{t()}: found {nsamples} calibration posterior samples.",
flush=True)
return calibration_samples
def main(loader, model, indxs, fdir, fname, num_split, verbose):
out = np.full(
len(indxs), np.nan,
dtype=[("mean_zcosmo", float), ("std_zcosmo", float)])
# Process each galaxy in this split
for i, n in enumerate(tqdm(indxs, desc=f"Split {num_split}",
disable=not verbose)):
x, y = model.posterior_zcosmo(
loader.cat["zcmb"][n], loader.cat["RA"][n], loader.cat["DEC"][n],
loader.los_density[n], loader.los_radial_velocity[n],
extra_sigma_v=loader.cat["e_zcmb"][n] * SPEED_OF_LIGHT,
verbose=False)
mu, std = model.posterior_mean_std(x, y)
out["mean_zcosmo"][i], out["std_zcosmo"][i] = mu, std
# Save the results of this rank
fname = join(fdir, f"{fname}_{num_split}.hdf5")
with File(fname, 'w') as f:
f.create_dataset("mean_zcosmo", data=out["mean_zcosmo"])
f.create_dataset("std_zcosmo", data=out["std_zcosmo"])
f.create_dataset("indxs", data=indxs)
###############################################################################
# Command line interface #
###############################################################################
if __name__ == "__main__":
comm = MPI.COMM_WORLD
rank, size = comm.Get_rank(), comm.Get_size()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# Calibration parameters
simname = "Carrick2015"
ksmooth = 0
nsim = 0
catalogue_calibration = "Pantheon+_zSN"
# Galaxy sample parameters
catalogue = "UPGLADE"
fpath_data = "/mnt/users/rstiskalek/csiborgtools/data/upglade_z_0p05_all_PROCESSED.h5" # noqa
# Number of splits for MPI
nsplits = 1000
# Folder to save the results
fdir = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/UPGLADE" # noqa
fname = f"zcosmo_{catalogue}"
# Load in the data, calibration samples and the model
loader = csiborgtools.flow.DataLoader(
simname, nsim, catalogue, fpath_data, paths, ksmooth=ksmooth,
verbose=rank == 0)
calibration_samples = load_calibration(
catalogue_calibration, simname, nsim, ksmooth, verbose=rank == 0)
model = csiborgtools.flow.Observed2CosmologicalRedshift(
calibration_samples, loader.rdist, loader._Omega_m)
if rank == 0:
print(f"{t()}: the catalogue size is {loader.cat['zcmb'].size}.")
print(f"{t()}: loaded calibration samples and model.", flush=True)
# Decide how to split up the job
if rank == 0:
indxs = np.arange(loader.cat["zcmb"].size)
split_indxs = np.array_split(indxs, nsplits)
else:
indxs = None
split_indxs = None
indxs = comm.bcast(indxs, root=0)
split_indxs = comm.bcast(split_indxs, root=0)
# Process all splits with MPI, the rank 0 delegates the jobs.
def main_wrapper(n):
main(loader, model, split_indxs[n], fdir, fname, n, verbose=size == 1)
comm.Barrier()
work_delegation(
main_wrapper, list(range(nsplits)), comm, master_verbose=True)
comm.Barrier()
# Combine the results to a single file
if rank == 0:
print("Combining results from all ranks.", flush=True)
mean_zcosmo = np.full(loader.cat["zcmb"].size, np.nan)
std_zcosmo = np.full_like(mean_zcosmo, np.nan)
for n in range(nsplits):
fname_current = join(fdir, f"{fname}_{n}.hdf5")
with File(fname_current, 'r') as f:
mask = f["indxs"][:]
mean_zcosmo[mask] = f["mean_zcosmo"][:]
std_zcosmo[mask] = f["std_zcosmo"][:]
remove(fname_current)
# Save the results
fname = join(fdir, f"{fname}.hdf5")
print(f"Saving results to `{fname}`.")
with File(fname, 'w') as f:
f.create_dataset("mean_zcosmo", data=mean_zcosmo)
f.create_dataset("std_zcosmo", data=std_zcosmo)
f.create_dataset("indxs", data=indxs)