csiborgtools/scripts/field_prop.py
Richard Stiskalek eccd8e3507
Add galaxy sampling (#88)
* Improve calculations

* Improve flags

* Add smoothed options

* Remove some old comments

* Edit little things

* Save smoothed

* Move files

* Edit imports

* Edit imports

* Renaming imports

* Renaming imports

* Sort imports

* Sort files

* Sorting

* Optionally make copies of the field

* Add quijote backup check

* Add direct field smoothing

* Shorten stupid documentation

* Shorten stupid docs

* Update conversion

* Add particles to ASCII conversion

* Add a short comment

* Add SDSS uncorrected distance

* Adjust comment

* Add FITS index to galaxies

* Remove spare space

* Remove a stupid line

* Remove blank line

* Make space separated

* Add interpolated field path

* Add field sampling

* Sort imports

* Return density in cells

* Clear out observer velocity

* Add 170817 sampling

* Fix normalization

* Update plot
2023-09-01 16:29:50 +01:00

270 lines
11 KiB
Python

# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
MPI script to calculate density field-derived fields in the CSiBORG
simulations' final snapshot.
"""
from argparse import ArgumentParser
from datetime import datetime
from distutils.util import strtobool
from gc import collect
import numpy
from mpi4py import MPI
from taskmaster import work_delegation
import csiborgtools
from utils import get_nsims
###############################################################################
# Density field #
###############################################################################
def density_field(nsim, parser_args, to_save=True):
"""
Calculate the density field in the CSiBORG simulation.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
if not parser_args.in_rsp:
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
parts = parts["particles"]
gen = csiborgtools.field.DensityField(box, parser_args.MAS)
field = gen(parts, parser_args.grid, verbose=parser_args.verbose)
else:
field = numpy.load(paths.field(
"density", parser_args.MAS, parser_args.grid, nsim, False))
radvel_field = numpy.load(paths.field(
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
if parser_args.verbose:
print(f"{datetime.now()}: converting density field to RSP.",
flush=True)
field = csiborgtools.field.field2rsp(field, radvel_field, box,
parser_args.MAS)
if to_save:
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Velocity field #
###############################################################################
def velocity_field(nsim, parser_args, to_save=True):
"""
Calculate the velocity field in a CSiBORG simulation.
"""
if parser_args.in_rsp:
raise NotImplementedError("Velocity field in RSP is not implemented.")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
parts = parts["particles"]
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
field = gen(parts, parser_args.grid, verbose=parser_args.verbose)
if to_save:
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Radial velocity field #
###############################################################################
def radvel_field(nsim, parser_args, to_save=True):
"""
Calculate the radial velocity field in the CSiBORG simulation.
"""
if parser_args.in_rsp:
raise NotImplementedError("Radial vel. field in RSP not implemented.")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
vel = numpy.load(paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp))
observer_velocity = csiborgtools.field.observer_vobs(vel)
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
field = gen.radial_velocity(vel, observer_velocity)
if to_save:
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Potential field #
###############################################################################
def potential_field(nsim, parser_args, to_save=True):
"""
Calculate the potential field in the CSiBORG simulation.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
if not parser_args.in_rsp:
rho = numpy.load(paths.field(
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
rho = density_gen.overdensity_field(rho)
gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
field = gen(rho)
else:
field = numpy.load(paths.field(
"potential", parser_args.MAS, parser_args.grid, nsim, False))
radvel_field = numpy.load(paths.field(
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
field = csiborgtools.field.field2rsp(field, radvel_field, box,
parser_args.MAS)
if to_save:
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Environment classification #
###############################################################################
def environment_field(nsim, parser_args, to_save=True):
"""
Calculate the environmental classification in the CSiBORG simulation.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
rho = numpy.load(paths.field(
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
rho = density_gen.overdensity_field(rho)
if parser_args.smooth_scale > 0.0:
rho = csiborgtools.field.smoothen_field(
rho, parser_args.smooth_scale, box.box2mpc(1.))
gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS)
field = gen(rho)
del rho
collect()
if parser_args.in_rsp:
radvel_field = numpy.load(paths.field(
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
args = (radvel_field, box, parser_args.MAS)
field.T00 = csiborgtools.field.field2rsp(field.T00, *args)
field.T11 = csiborgtools.field.field2rsp(field.T11, *args)
field.T22 = csiborgtools.field.field2rsp(field.T22, *args)
field.T01 = csiborgtools.field.field2rsp(field.T01, *args)
field.T02 = csiborgtools.field.field2rsp(field.T02, *args)
field.T12 = csiborgtools.field.field2rsp(field.T12, *args)
del radvel_field
collect()
eigvals = gen.tensor_field_eigvals(field)
del field
collect()
env = gen.eigvals_to_environment(eigvals)
if to_save:
fout = paths.field("environment", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp, parser_args.smooth_scale)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, env)
return env
###############################################################################
# Command line interface #
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. `-1` for all simulations.")
parser.add_argument("--kind", type=str,
choices=["density", "rspdensity", "velocity", "radvel",
"potential", "environment"],
help="What derived field to calculate?")
parser.add_argument("--MAS", type=str,
choices=["NGP", "CIC", "TSC", "PCS"])
parser.add_argument("--grid", type=int, help="Grid resolution.")
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
help="Calculate in RSP?")
parser.add_argument("--smooth_scale", type=float, default=0.0,
help="Smoothing scale in Mpc / h. Only used for the environment field.") # noqa
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
help="Verbosity flag for reading in particles.")
parser.add_argument("--simname", type=str, default="csiborg",
help="Verbosity flag for reading in particles.")
parser_args = parser.parse_args()
comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(parser_args, paths)
def main(nsim):
if parser_args.kind == "density" or parser_args.kind == "rspdensity":
density_field(nsim, parser_args)
elif parser_args.kind == "velocity":
velocity_field(nsim, parser_args)
elif parser_args.kind == "radvel":
radvel_field(nsim, parser_args)
elif parser_args.kind == "potential":
potential_field(nsim, parser_args)
elif parser_args.kind == "environment":
environment_field(nsim, parser_args)
else:
raise RuntimeError(f"Field {parser_args.kind} is not implemented.")
work_delegation(main, nsims, comm, master_verbose=True)