csiborgtools/notebooks/plot_galaxy_distribution.ipynb
Richard Stiskalek 5dd8c668fa
Gaussian smoothing of density fields (#33)
* Simplify smoothing support and looping over nonzero

* Simplify comments

* add now()

* add cat length

* add smoothed calculation

* add smoothing

* Add sorting

* Edit what is ignored

* Move notebooks

* Add nonsymmetric smoothed overlap

* Update NB

* Add support for reading in the smoothed overlap

* Switch to the true overlap definition

* Reader of the true overlap

* rem occups

* Import moved to a class

* Move definition

* Edit submission script

* Update to account for the new definition

* backup nb

* Switch back to properly initialising arrays

* Fix addition bug

* Update NB

* Fix little bug

* Update nb
2023-03-27 09:22:03 +01:00

1.1 MiB

In [1]:
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
# Local imports
try:
    import csiborgtools
except ModuleNotFoundError:
    import sys
    sys.path.append("../")
    import csiborgtools
import utils

%load_ext autoreload
%autoreload 2
In [2]:
obs = utils.load_2mpp()


cols = ["ra", "dec", "mass_cl", "dist"]
mmains = utils.load_mmains(1)
mmains = csiborgtools.utils.list_to_ndarray(mmains, cols)
sim = mmains[0, ...]
sim = csiborgtools.utils.array_to_structured(sim ,cols)
planck = utils.load_planck2015()
100%|█████████████████████████████████████████████| 1/1 [00:00<00:00,  4.37it/s]
In [3]:
dx = 20
dmin = 125
dmax = dmin + dx

mask_obs = (dmin < obs["CDIST_CMB"]) & (obs["CDIST_CMB"] < dmax)
mask_sim = (dmin < sim["dist"]) & (sim["dist"] < dmax) & (sim["mass_cl"] > 1e12)

width = 6.4
plt.figure(figsize=(width, width*0.75))
plt.scatter(obs["RA"][mask_obs], obs["DEC"][mask_obs], s=1.5, label="2M++")
plt.scatter(sim["ra"][mask_sim] , sim["dec"][mask_sim], s=1.5, label="CSiBORG")
plt.scatter(planck["RA"], planck["DEC"], label="Planck SZ clusters < 214 MPc", c="red")


plt.legend()
plt.xlabel("RA")
plt.ylabel("dec")
plt.tight_layout()
# plt.savefig("../plots/2mpp_overlap.png", dpi=450)
plt.show()
No description has been provided for this image
In [ ]: