csiborgtools/scripts/flow/flow_validation.py
2024-10-08 00:12:53 +01:00

444 lines
18 KiB
Python

# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to run the PV validation model on various catalogues and simulations.
The script is not MPI parallelised, instead it is best run on a GPU.
"""
from argparse import ArgumentParser, ArgumentTypeError
def none_or_int(value):
if value.lower() == "none":
return None
if "_" in value:
args = value.split("_")
if len(args) == 2:
k0, kf = args
dk = 1
elif len(args) == 3:
k0, kf, dk = args
else:
raise ArgumentTypeError(f"Invalid length of arguments: `{value}`.")
return [int(k) for k in range(int(k0), int(kf), int(dk))]
try:
return int(value)
except ValueError:
raise ArgumentTypeError(f"Invalid value: {value}. Must be an integer or 'none'.") # noqa
def parse_args():
parser = ArgumentParser()
parser.add_argument("--simname", type=str, required=True,
help="Simulation name.")
parser.add_argument("--catalogue", type=str, required=True,
help="PV catalogues.")
parser.add_argument("--ksmooth", type=int, default=0,
help="Smoothing index.")
parser.add_argument("--ksim", type=none_or_int, default=None,
help="IC iteration number. If 'None', all IC realizations are used.") # noqa
parser.add_argument("--ndevice", type=int, default=1,
help="Number of devices to request.")
parser.add_argument("--device", type=str, default="cpu",
help="Device to use.")
args = parser.parse_args()
# Convert the catalogue to a list of catalogues
args.catalogue = args.catalogue.split(",")
return args
ARGS = parse_args()
# This must be done before we import JAX etc.
from numpyro import set_host_device_count, set_platform # noqa
set_platform(ARGS.device) # noqa
set_host_device_count(ARGS.ndevice) # noqa
import sys # noqa
from os.path import join # noqa
import csiborgtools # noqa
import jax # noqa
import numpy as np # noqa
from csiborgtools import fprint # noqa
from h5py import File # noqa
from numpyro.infer import MCMC, NUTS, init_to_median # noqa
def print_variables(names, variables):
for name, variable in zip(names, variables):
print(f"{name:<20} {variable}", flush=True)
print(flush=True)
def get_models(ksim, get_model_kwargs, mag_selection, void_kwargs,
wo_num_dist_marginalisation, verbose=True):
"""Load the data and create the NumPyro models."""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
folder = "/mnt/extraspace/rstiskalek/catalogs/"
nsims = paths.get_ics(ARGS.simname)
if ksim is None:
nsim_iterator = [i for i in range(len(nsims))]
else:
nsim_iterator = [ksim]
nsims = [nsims[ksim]]
if verbose:
print(f"{'Simulation:':<20} {ARGS.simname}")
print(f"{'Catalogue:':<20} {ARGS.catalogue}")
print(f"{'Num. realisations:':<20} {len(nsims)}")
print(flush=True)
# Get models
models = [None] * len(ARGS.catalogue)
for i, cat in enumerate(ARGS.catalogue):
if cat == "A2":
fpath = join(folder, "A2.h5")
elif cat in ["LOSS", "Foundation", "Pantheon+", "SFI_gals",
"2MTF", "SFI_groups", "SFI_gals_masked",
"Pantheon+_groups", "Pantheon+_groups_zSN",
"Pantheon+_zSN"]:
fpath = join(folder, "PV_compilation.hdf5")
elif "Carrick2MTFmock" in cat:
ki = cat.split("_")[-1]
fpath =f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/flow_mock/Carrick2MTFmock_seed{ki}.hdf5" # noqa
elif "CF4_TFR" in cat:
fpath = join(folder, "PV/CF4/CF4_TF-distances.hdf5")
elif cat in ["CF4_GroupAll"]:
fpath = join(folder, "PV/CF4/CF4_GroupAll.hdf5")
elif "IndranilVoidTFRMock" in cat:
fpath = None
else:
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")
loader = csiborgtools.flow.DataLoader(ARGS.simname, nsim_iterator,
cat, fpath, paths,
ksmooth=ARGS.ksmooth)
models[i] = csiborgtools.flow.get_model(
loader, mag_selection=mag_selection[i], void_kwargs=void_kwargs,
wo_num_dist_marginalisation=wo_num_dist_marginalisation,
**get_model_kwargs)
fprint(f"num. radial steps is {len(loader.rdist)}")
return models
def get_harmonic_evidence(samples, log_posterior, nchains_harmonic, epoch_num):
"""Compute evidence using the `harmonic` package."""
data, names = csiborgtools.dict_samples_to_array(samples)
data = data.reshape(nchains_harmonic, -1, len(names))
log_posterior = log_posterior.reshape(nchains_harmonic, -1)
return csiborgtools.harmonic_evidence(
data, log_posterior, return_flow_samples=False, epochs_num=epoch_num)
def run_model(model, nsteps, nburn, model_kwargs, out_folder,
calculate_harmonic, nchains_harmonic, epoch_num, kwargs_print,
fname_kwargs):
"""Run the NumPyro model and save output to a file."""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
fname = paths.flow_validation(out_folder, ARGS.simname, ARGS.catalogue,
**fname_kwargs)
try:
ndata = sum(model.ndata for model in model_kwargs["models"])
except AttributeError as e:
raise AttributeError("The models must have an attribute `ndata` "
"indicating the number of data points.") from e
nuts_kernel = NUTS(model, init_strategy=init_to_median(num_samples=10000))
mcmc = MCMC(nuts_kernel, num_warmup=nburn, num_samples=nsteps)
rng_key = jax.random.PRNGKey(42)
mcmc.run(rng_key, extra_fields=("potential_energy",), **model_kwargs)
samples = mcmc.get_samples()
log_posterior = -mcmc.get_extra_fields()["potential_energy"]
BIC, AIC = csiborgtools.BIC_AIC(samples, log_posterior, ndata)
print(f"{'BIC':<20} {BIC}")
print(f"{'AIC':<20} {AIC}")
mcmc.print_summary()
if calculate_harmonic:
print("Calculating the evidence using `harmonic`.", flush=True)
neg_ln_evidence, neg_ln_evidence_err = get_harmonic_evidence(
samples, log_posterior, nchains_harmonic, epoch_num)
print(f"{'-ln(Z_h)':<20} {neg_ln_evidence}")
print(f"{'-ln(Z_h) error':<20} {neg_ln_evidence_err}")
else:
neg_ln_evidence = jax.numpy.nan
neg_ln_evidence_err = (jax.numpy.nan, jax.numpy.nan)
fname = join(out_folder, fname)
print(f"Saving results to `{fname}`.")
with File(fname, "w") as f:
# Write samples
grp = f.create_group("samples")
for key, value in samples.items():
grp.create_dataset(key, data=value)
# Write log likelihood and posterior
f.create_dataset("log_posterior", data=log_posterior)
# Write goodness of fit
grp = f.create_group("gof")
grp.create_dataset("BIC", data=BIC)
grp.create_dataset("AIC", data=AIC)
grp.create_dataset("neg_lnZ_harmonic", data=neg_ln_evidence)
grp.create_dataset("neg_lnZ_harmonic_err", data=neg_ln_evidence_err)
fname_summary = fname.replace(".hdf5", ".txt")
print(f"Saving summary to `{fname_summary}`.")
with open(fname_summary, 'w') as f:
original_stdout = sys.stdout
sys.stdout = f
print("User parameters:")
for kwargs in kwargs_print:
print_variables(kwargs.keys(), kwargs.values())
print("HMC summary:")
print(f"{'BIC':<20} {BIC}")
print(f"{'AIC':<20} {AIC}")
print(f"{'-ln(Z)':<20} {neg_ln_evidence}")
print(f"{'-ln(Z) error':<20} {neg_ln_evidence_err}")
mcmc.print_summary(exclude_deterministic=False)
sys.stdout = original_stdout
###############################################################################
# Command line interface #
###############################################################################
def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
alpha_min = -10 if "IndranilVoid" in ARGS.simname else -1.0
alpha_max = 10.0
if catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
return {"e_mu_min": 0.001, "e_mu_max": 1.0,
"mag_cal_mean": -18.25, "mag_cal_std": 2.0,
"alpha_cal_mean": 0.148, "alpha_cal_std": 1.0,
"beta_cal_mean": 3.112, "beta_cal_std": 2.0,
"alpha_min": alpha_min, "alpha_max": alpha_max,
"sample_alpha": sample_alpha
}
elif catalogue in ["SFI_gals", "2MTF"] or "CF4_TFR" in catalogue or "IndranilVoidTFRMock" in catalogue or "Carrick2MTFmock" in catalogue: # noqa
return {"e_mu_min": 0.001, "e_mu_max": 1.0,
"a_mean": -21., "a_std": 5.0,
"b_mean": -5.95, "b_std": 4.0,
"c_mean": 0., "c_std": 20.0,
"a_dipole_mean": 0., "a_dipole_std": 1.0,
"sample_a_dipole": sample_mag_dipole,
"alpha_min": alpha_min, "alpha_max": alpha_max,
"sample_alpha": sample_alpha,
"sample_curvature": False if "Carrick2MTFmock" in catalogue else True, # noqa
}
elif catalogue in ["CF4_GroupAll"]:
return {"e_mu_min": 0.001, "e_mu_max": 1.0,
"dmu_min": -3.0, "dmu_max": 3.0,
"dmu_dipole_mean": 0., "dmu_dipole_std": 1.0,
"sample_dmu_dipole": sample_mag_dipole,
"alpha_min": alpha_min, "alpha_max": alpha_max,
"sample_alpha": sample_alpha,
}
else:
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")
def get_toy_selection(catalogue):
"""Toy magnitude selection coefficients."""
if catalogue == "SFI_gals":
kind = "soft"
# m1, m2, a
coeffs = [11.467, 12.906, -0.231]
elif "CF4_TFR" in catalogue and "_i" in catalogue:
kind = "soft"
coeffs = [13.043, 14.423, -0.129]
elif "CF4_TFR" in catalogue and "w1" in catalogue:
kind = "soft"
coeffs = [11.731, 14.189, -0.118]
elif catalogue == "2MTF":
kind = "hard"
coeffs = 11.25
else:
fprint(f"found no selection coefficients for {catalogue}.")
return None
return {"kind": kind,
"coeffs": coeffs}
if __name__ == "__main__":
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
out_folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity" # noqa
print(f"{'Num. devices:':<20} {jax.device_count()}")
print(f"{'Devices:':<20} {jax.devices()}")
###########################################################################
# Fixed user parameters #
###########################################################################
# `None` means default behaviour
nsteps = 2_000
nburn = 2_000
zcmb_min = None
zcmb_max = 0.05
nchains_harmonic = 10
num_epochs = 50
inference_method = "mike"
mag_selection = None
sample_alpha = False if (ARGS.simname == "no_field" or "IndranilVoid" in ARGS.simname) else True # noqa
sample_beta = None
no_Vext = None
sample_Vmag_vax = False
sample_Vmono = False
sample_mag_dipole = False
wo_num_dist_marginalisation = False
absolute_calibration = None
calculate_harmonic = (False if (inference_method == "bayes") else True) and (not wo_num_dist_marginalisation) # noqa
sample_h = True if absolute_calibration is not None else False
# These mocks are generated without a density field, so there is no
# inhomogeneous Malmquist and we also do not need evidences.
for catalogue in ARGS.catalogue:
if "Carrick2MTFmock" in catalogue:
sample_alpha = False
calculate_harmonic = False
fname_kwargs = {"inference_method": inference_method,
"smooth": ARGS.ksmooth,
"nsim": ARGS.ksim,
"zcmb_min": zcmb_min,
"zcmb_max": zcmb_max,
"mag_selection": mag_selection,
"sample_alpha": sample_alpha,
"sample_beta": sample_beta,
"no_Vext": no_Vext,
"sample_Vmag_vax": sample_Vmag_vax,
"sample_Vmono": sample_Vmono,
"sample_mag_dipole": sample_mag_dipole,
"absolute_calibration": absolute_calibration,
}
main_params = {"nsteps": nsteps, "nburn": nburn,
"zcmb_min": zcmb_min,
"zcmb_max": zcmb_max,
"mag_selection": mag_selection,
"calculate_harmonic": calculate_harmonic,
"nchains_harmonic": nchains_harmonic,
"num_epochs": num_epochs,
"inference_method": inference_method,
"sample_mag_dipole": sample_mag_dipole,
"wo_dist_marg": wo_num_dist_marginalisation,
"absolute_calibration": absolute_calibration,
"sample_h": sample_h,
}
print_variables(main_params.keys(), main_params.values())
if sample_beta is None:
sample_beta = ARGS.simname == "Carrick2015"
if mag_selection and inference_method != "bayes":
raise ValueError("Magnitude selection is only supported with `bayes` inference.") # noqa
if "IndranilVoid" in ARGS.simname:
if ARGS.ksim is not None:
raise ValueError(
"`IndranilVoid` does not have multiple realisations.")
profile = ARGS.simname.split("_")[-1]
h = csiborgtools.flow.select_void_h(profile)
rdist = np.arange(0, 165, 0.5)
void_kwargs = {"profile": profile, "h": h, "order": 1, "rdist": rdist}
else:
void_kwargs = None
h = 1.
if inference_method != "bayes":
mag_selection = [None] * len(ARGS.catalogue)
elif mag_selection is None or mag_selection:
mag_selection = [get_toy_selection(cat) for cat in ARGS.catalogue]
if nsteps % nchains_harmonic != 0:
raise ValueError(
"The number of steps must be divisible by the number of chains.")
calibration_hyperparams = {"Vext_min": -3000, "Vext_max": 3000,
"Vmono_min": -1000, "Vmono_max": 1000,
"beta_min": -10.0, "beta_max": 10.0,
"sigma_v_min": 1.0, "sigma_v_max": 1000 if "IndranilVoid_" in ARGS.simname else 750., # noqa
"h_min": 0.01, "h_max": 5.0,
"no_Vext": False if no_Vext is None else no_Vext, # noqa
"sample_Vmag_vax": sample_Vmag_vax,
"sample_Vmono": sample_Vmono,
"sample_beta": sample_beta,
"sample_h": sample_h,
"sample_rLG": "IndranilVoid" in ARGS.simname,
"rLG_min": 0.0, "rLG_max": 500 * h,
}
print_variables(
calibration_hyperparams.keys(), calibration_hyperparams.values())
distmod_hyperparams_per_catalogue = []
for cat in ARGS.catalogue:
x = get_distmod_hyperparams(cat, sample_alpha, sample_mag_dipole)
print(f"\n{cat} hyperparameters:")
print_variables(x.keys(), x.values())
distmod_hyperparams_per_catalogue.append(x)
kwargs_print = (main_params, calibration_hyperparams,
*distmod_hyperparams_per_catalogue)
###########################################################################
get_model_kwargs = {
"zcmb_min": zcmb_min,
"zcmb_max": zcmb_max,
"absolute_calibration": absolute_calibration,
"calibration_fpath": "/mnt/extraspace/rstiskalek/catalogs/PV/CF4/CF4_TF_calibration.hdf5", # noqa
}
# In case we want to run multiple simulations independently.
if not isinstance(ARGS.ksim, list):
ksim_iterator = [ARGS.ksim]
else:
ksim_iterator = ARGS.ksim
for i, ksim in enumerate(ksim_iterator):
if len(ksim_iterator) > 1:
print(f"{'Current simulation:':<20} {i + 1} ({ksim}) out of {len(ksim_iterator)}.") # noqa
fname_kwargs["nsim"] = ksim
models = get_models(ksim, get_model_kwargs, mag_selection, void_kwargs,
wo_num_dist_marginalisation)
model_kwargs = {
"models": models,
"field_calibration_hyperparams": calibration_hyperparams,
"distmod_hyperparams_per_model": distmod_hyperparams_per_catalogue,
"inference_method": inference_method,
}
model = csiborgtools.flow.PV_validation_model
run_model(model, nsteps, nburn, model_kwargs, out_folder,
calculate_harmonic, nchains_harmonic, num_epochs,
kwargs_print, fname_kwargs)