mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:18:01 +00:00
353 lines
14 KiB
Python
353 lines
14 KiB
Python
# Copyright (C) 2024 Richard Stiskalek
|
|
# This program is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by the
|
|
# Free Software Foundation; either version 3 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
# Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
"""Script to help with plots in `flow_calibration.ipynb`."""
|
|
from copy import copy, deepcopy
|
|
|
|
import numpy as np
|
|
from jax import numpy as jnp
|
|
from getdist import MCSamples
|
|
from h5py import File
|
|
|
|
import csiborgtools
|
|
|
|
|
|
###############################################################################
|
|
# Convert between coordinate systems #
|
|
###############################################################################
|
|
|
|
|
|
def cartesian_to_radec(x, y, z):
|
|
d = (x**2 + y**2 + z**2)**0.5
|
|
dec = np.arcsin(z / d)
|
|
ra = np.arctan2(y, x)
|
|
ra[ra < 0] += 2 * np.pi
|
|
|
|
ra *= 180 / np.pi
|
|
dec *= 180 / np.pi
|
|
|
|
return d, ra, dec
|
|
|
|
|
|
###############################################################################
|
|
# Convert names to LaTeX #
|
|
###############################################################################
|
|
|
|
|
|
def names_to_latex(names, for_corner=False):
|
|
"""Convert the names of the parameters to LaTeX."""
|
|
ltx = {"alpha": "\\alpha",
|
|
"beta": "\\beta",
|
|
"Vmag": "V_{\\rm ext} ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"Vx": "V_x ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"Vy": "V_y ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"Vz": "V_z ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"sigma_v": "\\sigma_v ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"alpha_cal": "\\mathcal{A}",
|
|
"beta_cal": "\\mathcal{B}",
|
|
"mag_cal": "\\mathcal{M}",
|
|
"l": "\\ell ~ [\\mathrm{deg}]",
|
|
"b": "b ~ [\\mathrm{deg}]",
|
|
"rLG": "R_{\\rm offset} ~ [\\mathrm{Mpc} / h]",
|
|
"Vext_axis_mag": "V_{\\rm axis} ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
"Vvoid": "\\tilde{V}_{\\rm void} ~ [\\mathrm{km} / \\mathrm{s}]",
|
|
}
|
|
|
|
ltx_corner = {"alpha": r"$\alpha$",
|
|
"beta": r"$\beta$",
|
|
"Vmag": r"$V_{\rm ext}$",
|
|
"l": r"$\ell$",
|
|
"b": r"$b$",
|
|
"sigma_v": r"$\sigma_v$",
|
|
"alpha_cal": r"$\mathcal{A}$",
|
|
"beta_cal": r"$\mathcal{B}$",
|
|
"mag_cal": r"$\mathcal{M}$",
|
|
"Vvoid": r"$\tilde{V}_{\rm void}$",
|
|
}
|
|
|
|
names = copy(names)
|
|
for i, name in enumerate(names):
|
|
if "SFI_gals" in name:
|
|
names[i] = names[i].replace("SFI_gals", "SFI")
|
|
|
|
if "CF4_GroupAll" in name:
|
|
names[i] = names[i].replace("CF4_GroupAll", "CF4Group")
|
|
|
|
if "CF4_TFR_i" in name:
|
|
names[i] = names[i].replace("CF4_TFR_i", "CF4,TFR")
|
|
|
|
for cat in ["2MTF", "SFI", "CF4,TFR"]:
|
|
ltx[f"a_{cat}"] = f"a_{{\\rm TF}}^{{\\rm {cat}}}"
|
|
ltx[f"b_{cat}"] = f"b_{{\\rm TF}}^{{\\rm {cat}}}"
|
|
ltx[f"c_{cat}"] = f"c_{{\\rm TF}}^{{\\rm {cat}}}"
|
|
ltx[f"corr_mag_eta_{cat}"] = f"\\rho_{{m,\\eta}}^{{\\rm {cat}}}"
|
|
ltx[f"eta_mean_{cat}"] = f"\\widehat{{\\eta}}^{{\\rm {cat}}}"
|
|
ltx[f"eta_std_{cat}"] = f"\\widehat{{\\sigma}}_\\eta^{{\\rm {cat}}}"
|
|
ltx[f"mag_mean_{cat}"] = f"\\widehat{{m}}^{{\\rm {cat}}}"
|
|
ltx[f"mag_std_{cat}"] = f"\\widehat{{\\sigma}}_m^{{\\rm {cat}}}"
|
|
|
|
ltx_corner[f"a_{cat}"] = rf"$a_{{\rm TF}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"b_{cat}"] = rf"$b_{{\rm TF}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"c_{cat}"] = rf"$c_{{\rm TF}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"corr_mag_eta_{cat}"] = rf"$\rho_{{m,\eta}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"eta_mean_{cat}"] = rf"$\widehat{{\eta}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"eta_std_{cat}"] = rf"$\widehat{{\sigma}}_\eta^{{\rm {cat}}}$" # noqa
|
|
ltx_corner[f"mag_mean_{cat}"] = rf"$\widehat{{m}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"mag_std_{cat}"] = rf"$\widehat{{\sigma}}_m^{{\rm {cat}}}$"
|
|
|
|
for cat in ["2MTF", "SFI", "Foundation", "LOSS", "CF4Group", "CF4,TFR"]:
|
|
ltx[f"alpha_{cat}"] = f"\\alpha^{{\\rm {cat}}}"
|
|
ltx[f"e_mu_{cat}"] = f"\\sigma_{{\\mu}}^{{\\rm {cat}}}"
|
|
ltx[f"a_dipole_mag_{cat}"] = f"\\epsilon_{{\\rm mag}}^{{\\rm {cat}}}"
|
|
ltx[f"a_dipole_l_{cat}"] = f"\\epsilon_{{\\ell}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
|
ltx[f"a_dipole_b_{cat}"] = f"\\epsilon_{{b}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
|
|
|
ltx["a_dipole_mag"] = "\\epsilon_{{\\rm mag}}"
|
|
ltx["a_dipole_l"] = "\\epsilon_{{\\ell}} ~ [\\mathrm{{deg}}]"
|
|
ltx["a_dipole_b"] = "\\epsilon_{{b}} ~ [\\mathrm{{deg}}]"
|
|
|
|
ltx_corner[f"alpha_{cat}"] = rf"$\alpha^{{\rm {cat}}}$"
|
|
ltx_corner[f"e_mu_{cat}"] = rf"$\sigma_{{\mu}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"a_dipole_mag_{cat}"] = rf"$\epsilon_{{\rm mag}}^{{\rm {cat}}}$" # noqa
|
|
ltx_corner[f"a_dipole_l_{cat}"] = rf"$\epsilon_{{\ell}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"a_dipole_b_{cat}"] = rf"$\epsilon_{{b}}^{{\rm {cat}}}$"
|
|
|
|
for cat in ["Foundation", "LOSS"]:
|
|
ltx[f"alpha_cal_{cat}"] = f"\\mathcal{{A}}^{{\\rm {cat}}}"
|
|
ltx[f"beta_cal_{cat}"] = f"\\mathcal{{B}}^{{\\rm {cat}}}"
|
|
ltx[f"mag_cal_{cat}"] = f"\\mathcal{{M}}^{{\\rm {cat}}}"
|
|
|
|
ltx_corner[f"alpha_cal_{cat}"] = rf"$\mathcal{{A}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"beta_cal_{cat}"] = rf"$\mathcal{{B}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"mag_cal_{cat}"] = rf"$\mathcal{{M}}^{{\rm {cat}}}$"
|
|
|
|
for cat in ["CF4Group"]:
|
|
ltx[f"dmu_{cat}"] = f"\\Delta\\mu^{{\\rm {cat}}}"
|
|
ltx[f"dmu_dipole_mag_{cat}"] = f"\\epsilon_\\mu_{{\\rm mag}}^{{\\rm {cat}}}" # noqa
|
|
ltx[f"dmu_dipole_l_{cat}"] = f"\\epsilon_\\mu_{{\\ell}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
|
ltx[f"dmu_dipole_b_{cat}"] = f"\\epsilon_\\mu_{{b}}^{{\\rm {cat}}} ~ [\\mathrm{{deg}}]" # noqa
|
|
|
|
ltx_corner[f"dmu_{cat}"] = rf"$\Delta\mu_{{0}}^{{\rm {cat}}}$"
|
|
ltx_corner[f"dmu_dipole_mag_{cat}"] = rf"$\epsilon_{{\rm mag}}^{{\rm {cat}}}$" # noqa
|
|
ltx_corner[f"dmu_dipole_l_{cat}"] = rf"$\epsilon_{{\ell}}^{{\rm {cat}}}$" # noqa
|
|
ltx_corner[f"dmu_dipole_b_{cat}"] = rf"$\epsilon_{{b}}^{{\rm {cat}}}$" # noqa
|
|
|
|
labels = copy(names)
|
|
for i, label in enumerate(names):
|
|
if for_corner:
|
|
labels[i] = ltx_corner[label] if label in ltx_corner else label
|
|
else:
|
|
labels[i] = ltx[label] if label in ltx else label
|
|
return labels
|
|
|
|
|
|
def simname_to_pretty(simname):
|
|
ltx = {"Carrick2015": "Carrick+15",
|
|
"Lilow2024": "Lilow+24",
|
|
"csiborg1": "CB1",
|
|
"csiborg2_main": "CB2",
|
|
"csiborg2X": "Manticore V0",
|
|
"manticore_2MPP_N128_DES_V1": "Manticore V1",
|
|
"CF4": "Courtois+23",
|
|
"CF4gp": "CF4group",
|
|
"CLONES": "Sorce+2018",
|
|
"IndranilVoid_exp": "Exponential",
|
|
"IndranilVoid_gauss": "Gaussian",
|
|
"IndranilVoid_mb": "Maxwell-Boltzmann",
|
|
}
|
|
|
|
if isinstance(simname, list):
|
|
names = [ltx[s] if s in ltx else s for s in simname]
|
|
return "".join([f"{n}, " for n in names]).rstrip(", ")
|
|
|
|
return ltx[simname] if simname in ltx else simname
|
|
|
|
|
|
def catalogue_to_pretty(catalogue):
|
|
ltx = {"SFI_gals": r"SFI\texttt{++}",
|
|
"CF4_TFR_not2MTForSFI_i": r"CF4 $i$-band",
|
|
"CF4_TFR_i": r"CF4 TFR $i$",
|
|
"CF4_TFR_w1": r"CF4 TFR W1",
|
|
}
|
|
|
|
if isinstance(catalogue, list):
|
|
names = [ltx[s] if s in ltx else s for s in catalogue]
|
|
return "".join([f"{n}, " for n in names]).rstrip(", ")
|
|
|
|
return ltx[catalogue] if catalogue in ltx else catalogue
|
|
|
|
|
|
###############################################################################
|
|
# Read in goodness-of-fit #
|
|
###############################################################################
|
|
|
|
def get_gof(kind, fname):
|
|
"""Read in the goodness-of-fit statistics `kind`."""
|
|
if kind not in ["BIC", "AIC", "neg_lnZ_harmonic"]:
|
|
raise ValueError("`kind` must be one of 'BIC', 'AIC', 'neg_lnZ_harmonic'.") # noqa
|
|
|
|
with File(fname, 'r') as f:
|
|
return f[f"gof/{kind}"][()]
|
|
|
|
|
|
###############################################################################
|
|
# Read in samples #
|
|
###############################################################################
|
|
|
|
def get_samples(fname, convert_Vext_to_galactic=True):
|
|
"""Read in the samples from the HDF5 file."""
|
|
samples = {}
|
|
with File(fname, 'r') as f:
|
|
grp = f["samples"]
|
|
for key in grp.keys():
|
|
samples[key] = grp[key][...]
|
|
|
|
if "Vext" in samples:
|
|
if convert_Vext_to_galactic:
|
|
Vext = samples.pop("Vext")
|
|
samples["Vmag"] = np.linalg.norm(Vext, axis=1)
|
|
Vext = csiborgtools.cartesian_to_radec(Vext)
|
|
samples["l"], samples["b"] = csiborgtools.radec_to_galactic(
|
|
Vext[:, 1], Vext[:, 2])
|
|
else:
|
|
Vext = samples.pop("Vext")
|
|
samples["Vx"] = Vext[:, 0]
|
|
samples["Vy"] = Vext[:, 1]
|
|
samples["Vz"] = Vext[:, 2]
|
|
|
|
keys = list(samples.keys())
|
|
for key in keys:
|
|
|
|
if "dmu_dipole_" in key:
|
|
dmu = samples.pop(key)
|
|
|
|
dmu = csiborgtools.cartesian_to_radec(dmu)
|
|
dmu_mag = dmu[:, 0]
|
|
l, b = csiborgtools.radec_to_galactic(dmu[:, 1], dmu[:, 2])
|
|
|
|
samples[key.replace("dmu_dipole_", "dmu_dipole_mag_")] = dmu_mag
|
|
samples[key.replace("dmu_dipole_", "dmu_dipole_l_")] = l
|
|
samples[key.replace("dmu_dipole_", "dmu_dipole_b_")] = b
|
|
|
|
if "a_dipole" in key:
|
|
adipole = samples.pop(key)
|
|
adipole = csiborgtools.cartesian_to_radec(adipole)
|
|
adipole_mag = adipole[:, 0]
|
|
l, b = csiborgtools.radec_to_galactic(adipole[:, 1], adipole[:, 2])
|
|
samples[key.replace("a_dipole", "a_dipole_mag")] = adipole_mag
|
|
samples[key.replace("a_dipole", "a_dipole_l")] = l
|
|
samples[key.replace("a_dipole", "a_dipole_b")] = b
|
|
|
|
return samples
|
|
|
|
|
|
###############################################################################
|
|
# Bulk flow plotting #
|
|
###############################################################################
|
|
|
|
|
|
def get_bulkflow_simulation(simname, convert_to_galactic=True):
|
|
f = np.load(f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_{simname}.npz") # noqa
|
|
r, B = f["distances"], f["cumulative_velocity"]
|
|
|
|
if convert_to_galactic:
|
|
Bmag, Bl, Bb = cartesian_to_radec(B[..., 0], B[..., 1], B[..., 2])
|
|
Bl, Bb = csiborgtools.radec_to_galactic(Bl, Bb)
|
|
B = np.stack([Bmag, Bl, Bb], axis=-1)
|
|
|
|
return r, B
|
|
|
|
|
|
def get_bulkflow(fname, simname, convert_to_galactic=True, downsample=1,
|
|
Rmax=125):
|
|
# Read in the samples
|
|
with File(fname, "r") as f:
|
|
Vext = f["samples/Vext"][...]
|
|
try:
|
|
beta = f["samples/beta"][...]
|
|
except KeyError:
|
|
beta = jnp.ones(len(Vext))
|
|
|
|
# Read in the bulk flow
|
|
f = np.load(f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells/enclosed_mass_{simname}.npz") # noqa
|
|
r = f["distances"]
|
|
|
|
# Shape of B_i is (nsims, nradial)
|
|
Bx, By, Bz = (f["cumulative_velocity"][..., i] for i in range(3))
|
|
|
|
# Mask out the unconstrained large scales
|
|
Rmax = Rmax # Mpc/h
|
|
mask = r < Rmax
|
|
r = r[mask]
|
|
Bx = Bx[:, mask]
|
|
By = By[:, mask]
|
|
Bz = Bz[:, mask]
|
|
|
|
Vext = Vext[::downsample]
|
|
beta = beta[::downsample]
|
|
|
|
# Multiply the simulation velocities by beta.
|
|
Bx = Bx[..., None] * beta
|
|
By = By[..., None] * beta
|
|
Bz = Bz[..., None] * beta
|
|
|
|
# Add V_ext, shape of B_i is `(nsims, nradial, nsamples)``
|
|
Bx = Bx + Vext[:, 0]
|
|
By = By + Vext[:, 1]
|
|
Bz = Bz + Vext[:, 2]
|
|
|
|
if convert_to_galactic:
|
|
Bmag, Bl, Bb = cartesian_to_radec(Bx, By, Bz)
|
|
Bl, Bb = csiborgtools.radec_to_galactic(Bl, Bb)
|
|
B = np.stack([Bmag, Bl, Bb], axis=-1)
|
|
else:
|
|
B = np.stack([Bx, By, Bz], axis=-1)
|
|
|
|
# Stack over the simulations
|
|
B = np.hstack([B[i] for i in range(len(B))])
|
|
return r, B
|
|
|
|
###############################################################################
|
|
# Prepare samples for plotting #
|
|
###############################################################################
|
|
|
|
|
|
def samples_for_corner(samples):
|
|
samples = deepcopy(samples)
|
|
|
|
# Remove the true parameters of each galaxy.
|
|
keys = list(samples.keys())
|
|
for key in keys:
|
|
# Generally don't want to plot the true latent parameters..
|
|
if "x_TFR" in key or "_true_" in key:
|
|
samples.pop(key)
|
|
|
|
keys = list(samples.keys())
|
|
|
|
if any(x.ndim > 1 for x in samples.values()):
|
|
raise ValueError("All samples must be 1D arrays.")
|
|
|
|
data = np.vstack([x for x in samples.values()]).T
|
|
labels = names_to_latex(list(samples.keys()), for_corner=True)
|
|
|
|
return data, labels, keys
|
|
|
|
|
|
def samples_to_getdist(samples, label):
|
|
data, __, keys = samples_for_corner(samples)
|
|
|
|
return MCSamples(
|
|
samples=data, names=keys,
|
|
labels=names_to_latex(keys, for_corner=False),
|
|
label=label)
|