csiborgtools/scripts_plots/plt_utils.py
Richard Stiskalek 8e3127f4d9
New plots ()
* Update verbosity messages

* Update verbosity messags

* Update more verbosity flags

* Update the iterator settings

* Add basic plots

* Update verbosity flags

* Update arg parsre

* Update plots

* Remove some older code

* Fix some definitions

* Update plots

* Update plotting

* Update plots

* Add support functions

* Update nb

* Improve plots, move back to scripts

* Update plots

* pep8

* Add max overlap plot

* Add blank line

* Upload changes

* Update changes

* Add weighted stats

* Remove

* Add import

* Add Max's matching

* Edit submission

* Add paths to Max's matching

* Fix matching

* Edit submission

* Edit plot

* Add max overlap separation plot

* Add periodic distance

* Update overlap summaries

* Add nsim0 for Max matvhing

* Add Max's agreement plot

* Add Quijote for Max method

* Update ploitting

* Update name
2023-08-18 19:20:47 +01:00

130 lines
4.1 KiB
Python

# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
import numpy
from scipy.stats import binned_statistic
from scipy.special import erf
dpi = 600
fout = "../plots/"
mplstyle = ["science"]
def latex_float(*floats, n=2):
"""
Convert a float or a list of floats to a LaTeX string(s). Taken from [1].
Parameters
----------
floats : float or list of floats
The float(s) to be converted.
n : int, optional
The number of significant figures to be used in the LaTeX string.
Returns
-------
latex_floats : str or list of str
The LaTeX string(s) representing the float(s).
References
----------
[1] https://stackoverflow.com/questions/13490292/format-number-using-latex-notation-in-python # noqa
"""
latex_floats = [None] * len(floats)
for i, f in enumerate(floats):
float_str = "{0:.{1}g}".format(f, n)
if "e" in float_str:
base, exponent = float_str.split("e")
latex_floats[i] = r"{0} \times 10^{{{1}}}".format(base,
int(exponent))
else:
latex_floats[i] = float_str
if len(floats) == 1:
return latex_floats[0]
return latex_floats
def nan_weighted_average(arr, weights=None, axis=None):
if weights is None:
weights = numpy.ones_like(arr)
valid_entries = ~numpy.isnan(arr)
# Set NaN entries in arr to 0 for computation
arr = numpy.where(valid_entries, arr, 0)
# Set weights of NaN entries to 0
weights = numpy.where(valid_entries, weights, 0)
# Compute the weighted sum and the sum of weights along the axis
weighted_sum = numpy.sum(arr * weights, axis=axis)
sum_weights = numpy.sum(weights, axis=axis)
return weighted_sum / sum_weights
def nan_weighted_std(arr, weights=None, axis=None, ddof=0):
if weights is None:
weights = numpy.ones_like(arr)
valid_entries = ~numpy.isnan(arr)
# Set NaN entries in arr to 0 for computation
arr = numpy.where(valid_entries, arr, 0)
# Set weights of NaN entries to 0
weights = numpy.where(valid_entries, weights, 0)
# Calculate weighted mean
weighted_mean = numpy.sum(
arr * weights, axis=axis) / numpy.sum(weights, axis=axis)
# Calculate the weighted variance
variance = numpy.sum(
weights * (arr - numpy.expand_dims(weighted_mean, axis))**2, axis=axis)
variance /= numpy.sum(weights, axis=axis) - ddof
return numpy.sqrt(variance)
def compute_error_bars(x, y, xbins, sigma):
bin_indices = numpy.digitize(x, xbins)
y_medians = numpy.array([numpy.median(y[bin_indices == i])
for i in range(1, len(xbins))])
lower_pct = 100 * 0.5 * (1 - erf(sigma / numpy.sqrt(2)))
upper_pct = 100 - lower_pct
y_lower = numpy.full(len(y_medians), numpy.nan)
y_upper = numpy.full(len(y_medians), numpy.nan)
for i in range(len(y_medians)):
if numpy.sum(bin_indices == i + 1) == 0:
continue
y_lower[i] = numpy.percentile(y[bin_indices == i + 1], lower_pct)
y_upper[i] = numpy.percentile(y[bin_indices == i + 1], upper_pct)
yerr = (y_medians - numpy.array(y_lower), numpy.array(y_upper) - y_medians)
return y_medians, yerr
def normalize_hexbin(hb):
hexagon_counts = hb.get_array()
normalized_counts = hexagon_counts / hexagon_counts.sum()
hb.set_array(normalized_counts)
hb.set_clim(normalized_counts.min(), normalized_counts.max())