# This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ Script to find the nearest neighbour of each halo in a given halo catalogue from the remaining catalogues in the suite (CSIBORG or Quijote). The script is MPI parallelized over the reference simulations. """ from argparse import ArgumentParser from datetime import datetime from distutils.util import strtobool import numpy import yaml from mpi4py import MPI from taskmaster import work_delegation from utils import open_catalogues try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools def find_neighbour(args, nsim, cats, paths, comm): """ Find the nearest neighbour of each halo in the given catalogue. Parameters ---------- args : argparse.Namespace Command line arguments. nsim : int Simulation index. cats : dict Dictionary of halo catalogues. Keys are simulation indices, values are the catalogues. paths : csiborgtools.paths.Paths Paths object. comm : mpi4py.MPI.Comm MPI communicator. Returns ------- None """ ndist, cross_hindxs = csiborgtools.match.find_neighbour(nsim, cats) mass_key = "totpartmass" if args.simname == "csiborg" else "group_mass" cat0 = cats[nsim] mass = cat0[mass_key] rdist = cat0.radial_distance(in_initial=False) fout = paths.cross_nearest(args.simname, args.run, nsim) if args.verbose: print(f"Rank {comm.Get_rank()} writing to `{fout}`.", flush=True) numpy.savez(fout, ndist=ndist, cross_hindxs=cross_hindxs, mass=mass, rdist=rdist) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--run", type=str, help="Run name") parser.add_argument("--simname", type=str, choices=["csiborg", "quijote"], help="Simulation name") parser.add_argument("--nsims", type=int, nargs="+", default=None, help="Indices of simulations to cross. If `-1` processes all simulations.") # noqa parser.add_argument("--Rmax", type=float, default=155/0.705, help="High-resolution region radius") parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)), default=False) args = parser.parse_args() with open("./match_finsnap.yml", "r") as file: config = yaml.safe_load(file) comm = MPI.COMM_WORLD paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cats = open_catalogues(args, config, paths, comm) def do_work(nsim): return find_neighbour(args, nsim, cats, paths, comm) work_delegation(do_work, list(cats.keys()), comm, master_verbose=args.verbose) comm.Barrier() if comm.Get_rank() == 0: print(f"{datetime.now()}: all finished. Quitting.")