# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ MPI script to calculate density field-derived fields in the CSiBORG simulations' final snapshot. """ from argparse import ArgumentParser from datetime import datetime from distutils.util import strtobool from gc import collect import numpy from mpi4py import MPI try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools from taskmaster import work_delegation from utils import get_nsims ############################################################################### # Density field # ############################################################################### def density_field(nsim, parser_args, to_save=True): """ Calculate the density field in the CSiBORG simulation. Parameters ---------- nsim : int Simulation index. parser_args : argparse.Namespace Parsed arguments. to_save : bool, optional Whether to save the output to disk. Returns ------- field : 3-dimensional array """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsnap = max(paths.get_snapshots(nsim, "csiborg")) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg")) parts = parts["particles"] gen = csiborgtools.field.DensityField(box, parser_args.MAS) if parser_args.kind == "density": field = gen(parts, parser_args.grid, in_rsp=False, verbose=parser_args.verbose) if parser_args.in_rsp: field = csiborgtools.field.field2rsp(*field, parts=parts, box=box, verbose=parser_args.verbose) else: field = gen(parts, parser_args.grid, in_rsp=parser_args.in_rsp, verbose=parser_args.verbose) if parser_args.smooth_scale > 0: field = csiborgtools.field.smoothen_field( field, parser_args.smooth_scale, box.boxsize * box.h, threads=1) if to_save: fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid, nsim, parser_args.in_rsp, parser_args.smooth_scale) print(f"{datetime.now()}: saving output to `{fout}`.") numpy.save(fout, field) return field ############################################################################### # Velocity field # ############################################################################### def velocity_field(nsim, parser_args, to_save=True): """ Calculate the velocity field in the CSiBORG simulation. Parameters ---------- nsim : int Simulation index. parser_args : argparse.Namespace Parsed arguments. to_save : bool, optional Whether to save the output to disk. Returns ------- velfield : 4-dimensional array """ if parser_args.in_rsp: raise NotImplementedError("Velocity field in RSP is not implemented.") if parser_args.smooth_scale > 0: raise NotImplementedError( "Smoothed velocity field is not implemented.") paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) mpart = 1.1641532e-10 # Particle mass in CSiBORG simulations. nsnap = max(paths.get_snapshots(nsim, "csiborg")) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg")) parts = parts["particles"] gen = csiborgtools.field.VelocityField(box, parser_args.MAS) field = gen(parts, parser_args.grid, mpart, verbose=parser_args.verbose) if to_save: fout = paths.field("velocity", parser_args.MAS, parser_args.grid, nsim, in_rsp=False) print(f"{datetime.now()}: saving output to `{fout}`.") numpy.save(fout, field) return field ############################################################################### # Potential field # ############################################################################### def potential_field(nsim, parser_args, to_save=True): """ Calculate the potential field in the CSiBORG simulation. Parameters ---------- nsim : int Simulation index. parser_args : argparse.Namespace Parsed arguments. to_save : bool, optional Whether to save the output to disk. Returns ------- potential : 3-dimensional array """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsnap = max(paths.get_snapshots(nsim, "csiborg")) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) # Load the real space overdensity field density_gen = csiborgtools.field.DensityField(box, parser_args.MAS) rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False)) if parser_args.smooth_scale > 0: rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale, box.boxsize * box.h, threads=1) rho = density_gen.overdensity_field(rho) # Calculate the real space potentiel field gen = csiborgtools.field.PotentialField(box, parser_args.MAS) field = gen(rho) if parser_args.in_rsp: parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg")) parts = parts["particles"] field = csiborgtools.field.field2rsp(*field, parts=parts, box=box, verbose=parser_args.verbose) if to_save: fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid, nsim, parser_args.in_rsp, parser_args.smooth_scale) print(f"{datetime.now()}: saving output to `{fout}`.") numpy.save(fout, field) return field ############################################################################### # Radial velocity field # ############################################################################### def radvel_field(nsim, parser_args, to_save=True): """ Calculate the radial velocity field in the CSiBORG simulation. Parameters ---------- nsim : int Simulation index. parser_args : argparse.Namespace Parsed arguments. to_save : bool, optional Whether to save the output to disk. Returns ------- radvel : 3-dimensional array """ if parser_args.in_rsp: raise NotImplementedError("Radial vel. field in RSP not implemented.") if parser_args.smooth_scale > 0: raise NotImplementedError( "Smoothed radial vel. field not implemented.") paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsnap = max(paths.get_snapshots(nsim, "csiborg")) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) vel = numpy.load(paths.field("velocity", parser_args.MAS, parser_args.grid, nsim, parser_args.in_rsp)) gen = csiborgtools.field.VelocityField(box, parser_args.MAS) field = gen.radial_velocity(vel) if to_save: fout = paths.field("radvel", parser_args.MAS, parser_args.grid, nsim, parser_args.in_rsp) print(f"{datetime.now()}: saving output to `{fout}`.") numpy.save(fout, field) return field ############################################################################### # Environment classification # ############################################################################### def environment_field(nsim, parser_args, to_save=True): """ Calculate the environmental classification in the CSiBORG simulation. Parameters ---------- nsim : int Simulation index. parser_args : argparse.Namespace Parsed arguments. to_save : bool, optional Whether to save the output to disk. Returns ------- env : 3-dimensional array """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsnap = max(paths.get_snapshots(nsim, "csiborg")) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) density_gen = csiborgtools.field.DensityField(box, parser_args.MAS) gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS) # Load the real space overdensity field if parser_args.verbose: print(f"{datetime.now()}: loading density field.") rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False)) if parser_args.smooth_scale > 0: rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale, box.boxsize * box.h, threads=1) rho = density_gen.overdensity_field(rho) # Calculate the real space tidal tensor field, delete overdensity. if parser_args.verbose: print(f"{datetime.now()}: calculating tidal tensor field.") tensor_field = gen(rho) del rho collect() # Optionally drag the field to RSP. if parser_args.in_rsp: parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg")) parts = parts["particles"] fields = (tensor_field.T00, tensor_field.T11, tensor_field.T22, tensor_field.T01, tensor_field.T02, tensor_field.T12) T00, T11, T22, T01, T02, T12 = csiborgtools.field.field2rsp( *fields, parts=parts, box=box, verbose=parser_args.verbose) tensor_field.T00[...] = T00 tensor_field.T11[...] = T11 tensor_field.T22[...] = T22 tensor_field.T01[...] = T01 tensor_field.T02[...] = T02 tensor_field.T12[...] = T12 del T00, T11, T22, T01, T02, T12 collect() # Calculate the eigenvalues of the tidal tensor field, delete tensor field. if parser_args.verbose: print(f"{datetime.now()}: calculating eigenvalues.") eigvals = gen.tensor_field_eigvals(tensor_field) del tensor_field collect() # Classify the environment based on the eigenvalues. if parser_args.verbose: print(f"{datetime.now()}: classifying environment.") env = gen.eigvals_to_environment(eigvals) del eigvals collect() if to_save: fout = paths.field("environment", parser_args.MAS, parser_args.grid, nsim, parser_args.in_rsp, parser_args.smooth_scale) print(f"{datetime.now()}: saving output to `{fout}`.") numpy.save(fout, env) return env ############################################################################### # Command line interface # ############################################################################### if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--nsims", type=int, nargs="+", default=None, help="IC realisations. `-1` for all simulations.") parser.add_argument("--kind", type=str, choices=["density", "rspdensity", "velocity", "radvel", "potential", "environment"], help="What derived field to calculate?") parser.add_argument("--MAS", type=str, choices=["NGP", "CIC", "TSC", "PCS"]) parser.add_argument("--grid", type=int, help="Grid resolution.") parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)), help="Calculate in RSP?") parser.add_argument("--smooth_scale", type=float, default=0, help="Smoothing scale in Mpc/h.") parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)), help="Verbosity flag for reading in particles.") parser.add_argument("--simname", type=str, default="csiborg", help="Verbosity flag for reading in particles.") parser_args = parser.parse_args() comm = MPI.COMM_WORLD paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsims = get_nsims(parser_args, paths) def main(nsim): if parser_args.kind == "density" or parser_args.kind == "rspdensity": density_field(nsim, parser_args) elif parser_args.kind == "velocity": velocity_field(nsim, parser_args) elif parser_args.kind == "radvel": radvel_field(nsim, parser_args) elif parser_args.kind == "potential": potential_field(nsim, parser_args) elif parser_args.kind == "environment": environment_field(nsim, parser_args) else: raise RuntimeError(f"Field {parser_args.kind} is not implemented.") work_delegation(main, nsims, comm, master_verbose=True)