# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ Script to calculate the particle centre of mass, Lagrangian patch size in the initial snapshot. The initial snapshot particles are read from the sorted files. """ from argparse import ArgumentParser from datetime import datetime import numpy from mpi4py import MPI from taskmaster import work_delegation from tqdm import tqdm from utils import get_nsims try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools def _main(nsim, simname, verbose): """ Calculate the Lagrangian halo centre of mass and Lagrangian patch size in the initial snapshot. Parameters ---------- nsim : int IC realisation index. simname : str Simulation name. verbose : bool Verbosity flag. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cols = [("index", numpy.int32), ("x", numpy.float32), ("y", numpy.float32), ("z", numpy.float32), ("lagpatch_size", numpy.float32), ("lagpatch_ncells", numpy.int32),] fname = paths.initmatch(nsim, simname, "particles") parts = csiborgtools.read.read_h5(fname) parts = parts['particles'] halo_map = csiborgtools.read.read_h5(paths.particles(nsim, simname)) halo_map = halo_map["halomap"] if simname == "csiborg": cat = csiborgtools.read.CSiBORGHaloCatalogue( nsim, paths, bounds=None, load_fitted=False, load_initial=False) else: cat = csiborgtools.read.QuijoteHaloCatalogue( nsim, paths, nsnap=4, load_fitted=False, load_initial=False) hid2map = {hid: i for i, hid in enumerate(halo_map[:, 0])} # Initialise the overlapper. if simname == "csiborg": kwargs = {"box_size": 2048, "bckg_halfsize": 475} else: kwargs = {"box_size": 512, "bckg_halfsize": 256} overlapper = csiborgtools.match.ParticleOverlap(**kwargs) out = csiborgtools.read.cols_to_structured(len(cat), cols) for i, hid in enumerate(tqdm(cat["index"]) if verbose else cat["index"]): out["index"][i] = hid part = csiborgtools.read.load_halo_particles(hid, parts, halo_map, hid2map) # Skip if the halo has no particles or is too small. if part is None or part.size < 100: continue pos, mass = part[:, :3], part[:, 3] # Calculate the centre of mass and the Lagrangian patch size. cm = csiborgtools.fits.center_of_mass(pos, mass, boxsize=1.0) distances = csiborgtools.fits.periodic_distance(pos, cm, boxsize=1.0) out["x"][i], out["y"][i], out["z"][i] = cm out["lagpatch_size"][i] = numpy.percentile(distances, 99) # Calculate the number of cells with > 0 density. delta = overlapper.make_delta(pos, mass, subbox=True) out["lagpatch_ncells"][i] = csiborgtools.fits.delta2ncells(delta) # Now save it fout = paths.initmatch(nsim, simname, "fit") if verbose: print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True) with open(fout, "wb") as f: numpy.save(f, out) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--simname", type=str, default="csiborg", choices=["csiborg", "quijote"], help="Simulation name") parser.add_argument("--nsims", type=int, nargs="+", default=None, help="IC realisations. If `-1` processes all.") args = parser.parse_args() paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsims = get_nsims(args, paths) def main(nsim): _main(nsim, args.simname, MPI.COMM_WORLD.Get_size() == 1) work_delegation(main, nsims, MPI.COMM_WORLD)