# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ Script to calculate the particle centre of mass, Lagrangian patch size in the initial snapshot. The initial snapshot particles are read from the sorted files. """ from argparse import ArgumentParser from datetime import datetime import numpy from mpi4py import MPI from tqdm import tqdm from utils import get_nsims try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools # Get MPI things comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() verbose = nproc == 1 # Argument parser parser = ArgumentParser() parser.add_argument("--simname", type=str, default="csiborg", choices=["csiborg", "quijote"], help="Simulation name") parser.add_argument("--nsims", type=int, nargs="+", default=None, help="IC realisations. If `-1` processes all simulations.") args = parser.parse_args() paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) partreader = csiborgtools.read.ParticleReader(paths) nsims = get_nsims(args, paths) cols_collect = [("index", numpy.int32), ("x", numpy.float32), ("y", numpy.float32), ("z", numpy.float32), ("lagpatch_size", numpy.float32), ("lagpatch_ncells", numpy.int32),] # MPI loop over simulations jobs = csiborgtools.fits.split_jobs(len(nsims), nproc)[rank] for nsim in [nsims[i] for i in jobs]: nsnap = max(paths.get_snapshots(nsim)) overlapper = csiborgtools.match.ParticleOverlap() print(f"{datetime.now()}: rank {rank} calculating simulation `{nsim}`.", flush=True) parts = csiborgtools.read.read_h5(paths.initmatch(nsim, "particles")) parts = parts['particles'] halo_map = csiborgtools.read.read_h5(paths.particles(nsim)) halo_map = halo_map["halomap"] cat = csiborgtools.read.CSiBORGHaloCatalogue( nsim, paths, rawdata=True, load_fitted=False, load_initial=False) hid2map = {hid: i for i, hid in enumerate(halo_map[:, 0])} out = csiborgtools.read.cols_to_structured(len(cat), cols_collect) for i, hid in enumerate(tqdm(cat["index"]) if verbose else cat["index"]): out["index"][i] = hid part = csiborgtools.read.load_halo_particles(hid, parts, halo_map, hid2map) # Skip if the halo is too small. if part is None or part.size < 100: continue # Calculate the centre of mass and the Lagrangian patch size. dist, cm = csiborgtools.fits.dist_centmass(part) # We enforce a maximum patchsize of 0.075 in box coordinates. patchsize = min(numpy.percentile(dist, 99), 0.075) out["x"][i], out["y"][i], out["z"][i] = cm out["lagpatch_size"][i] = patchsize # Calculate the number of cells with > 0 density. delta = overlapper.make_delta(part[:, :3], part[:, 3], subbox=True) out["lagpatch_ncells"][i] = csiborgtools.fits.delta2ncells(delta) # Now save it fout = paths.initmatch(nsim, "fit") print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True) with open(fout, "wb") as f: numpy.save(f, out)